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__________________________________________________________________________________________________________________________________________________________________________
BLOCK-1: COMPLEX INTEGRATION  [16 Marks]
______________________________________________________________________________________________________________________________________________

STRUCTURE
1.0 Objective
1.1 Introduction
1.2 Integration of complex valued function of a real

variable
1.3 Contour integration

1.3.1 Preliminaries
1.3.2 Complex integration
1.3.3 Properties of Contour Integral

1.4 Cauchy's theorem
1.4.1 Antiderivative
1.4.2 Cauchy-Gaursat theorem

1.5 Cauchy's Integral formula and Consequences
1.5.1 Cauchy's integral formula
1.5.2 Higher order derivative
1.5.3 Liouville's theorem
1.5.4 Fundamental theorem of algebra

1.6 Mazimum Modulus Principle
1.7 Schwarz Lemma
1.8 1.  Let us Sum up

2.  Key words
3.  References
4.  Possible Answer to the CYP
5.  Model Question.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.0 Objectives__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 After going through this block will be able to

 Intergrate complex-valued function of a real variable

 Obtain Use contour Integration

 Use Cauchy-Goursat theorem to find  some

particular integral.



3

When the individual integrals on the right exist.
Thus we have

     Re Re
b b b

a a a

w t dt u t dt i w t dt   

and      Im Im
b b b

a a a

w t dt v t dt i w t dt   

Consider fthe following example to have a better idea :

Example 1 :    
1 1

0 0

1 2 1 2 2 2 / 3
b

a

it dt t dt i tdt i       

By applying the fundamental theorem of calculus to real and

imaginary part, we observe that it is also applicable to the

integral  
b

a

w t dt .

Example 2 : 
/ 4

0

it ite dt ie


 

Improper integrals of  w t  over unbounded intervals are

defined in  a similar way. that is

   
a

f z dz w t dt


  as R

The existance of the integrals of u and v is ensured if these

functions are continuous piecewise on [a,b]. A function is said

to be  piecewise continuous on [a,b] if [a,b] can be broken up

into finite number of subintervals in which the function in

continuous.

 Point to remember :  To evaluate integral of any

complex valued function of real variable      w t u t iv t  ,

simply apply the rules of integration of real functions to

u(t) and v(t).
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Example :   1/f z z  has isolated singularity at z=0, whereas

  1/ sin /f z z  has singularities at z=0, 1/n (n=1, 2, 3, ...., n)

of which z=0 is a non isolated singularity.

Result : If f is  continuous and non-zero at a point a then

  0f z    throughout some neighbourhood of that point.

Note: For f u iv   to be analytic at a point a  is that  u and v
possesses continuous first  order partial derivative and satisfy
CauchyRiemann's equation at that point, i.e. , , ,x y x yu u v v  are
continuous and satisfy  x yu v  and y xu v  .

Definition (Harmonic function) : A real valued function u(x,y)
of two real veriable is said to be harmonic in a domain D, if
the second order partial derivatives of u are continuous and
satisfy the Laplace equation 0xx yyu u   .

Definition (Harmonic conjugate) : Let u be harmonic in a
domain D. If there exixts a real valued function v(x,y) of two
variable such that u+iv is analytic in D, then  v is said to be
harmonic conjugate of u.

Note : If v is a harmonic conjugate of u, then for any constant
c, v=c is also a harmonic conjugate of u.

Result : For any harmonic function u in a domain D there
always exist a harmonic conjugate.

Theorem (Green's theorem) : If D is a domain bounded by a closed
contour C, and u and v are real valued functions of two real
variables, whose partial derivatives are continuous on d, then

   y x

D C

v u dxdy udx vdy   

Definition (Arc): Consider  a continuous function from some
interval [a,b] to C, the set points of the image is ordered by the
natural ordering of the reals of [a,b]. this set is called an arc



7

Note : In our study, unless otherwise mentioned, positive
direction of closed contour will be considered.
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.3.2 Complex Integration__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Let :f C C  be a complex function. Then f u iv  , when u

and v are complex-valued functions of two real variable. Let

C be a contour given by  : ,z a b C , where       z t x t iy t  .

Then we define the line integral, or contour integral of f along
C as

      dttztzdzz
ac   'ff

b

The  RHS is the integral of a complex valued function of real
variable over [a, b]. So all the results of section 4.2 are
applicable here.

Example 1 :   1zz f  and C is the arc from z=0 to z=2
consisting of the segment 0 2x 
Here parametric representation of C is

  0z t t i  , 0 2t 

         dt1tzdttztzdzz
00c   f'ff

22

  0dt1t
0

  f
2

Example 2 : Let  
__

f z z  and C be given by

  ite2tz  ,  2t2


then       dttztzdzz
2c 




 'ff

2

 
__

2 2

2 2

2 2 .2it it itz t ie dt e ie dt
 

 


 
 

2

2

4dt i






 
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    '
a

b

f z t z t dt




  
Put s=-t then  ds= -dt

      '
1 1

a

c b

f z dz f z s z s ds


  

i.e.       1 1 '
a

c b

f z dz f z s z s ds


  

   
c c

f z dz f z dz


   

(d) Let 1C  be given by  1 : ,z a b C

2C  be given by  2 : ,z b d C

 C be given by      3 1: , : ,z a b C z t z t a t b   

        2 ,z t  b t d 
Then

      '
d

c a

f z dz f z t z t dt 

But     'f z t z t  is a complex valued funfction defined on [a,

b]. So we can write

              ' ' '
d b d

a a b

f z t z t dt f z t z t dt f z t z t dt   

         1 1 2 2' '
b d

a b

f z t z t dt f z t z t dt  

   
1 2

1 1 2 2

C C

f z dz f z dz  

   
1 2C C

f z dz f z dz  
(e) We have

                
1

' ' '
b b b

c a a a

f z dz f z t z t dt f z t z t dt M z t dt      ,
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            
1 1

3 3

0 0

3 3x t y t i x t dt x t y t i xt idt           
1 1

3

0 0

3t it dt i tdt     

5 3

2

i


Example 2 : Let 1C  and 2C  be as in example 1 and let

   2g z x y i  

Then

        
1

1

0

2 1
c

g z dz x t y t i i dt      

   
1

0

2 1 2 3t t i i dt i        

and      
1

1 1 1 1

c OA AB

g z dz g z dz g z dz   

     
1 1

0 0

2 2x t i dt y t i     idt

   
1 1

0 0

2 2 2 3t i dt t dt i       
Consider the following example

Example 3 : Let C be the contour given by  : , 2z o C  ,

  cos sin itz t t i t e  

Let   2zz f

Then

      
2

2

0

sin cos
C

f z dz z t t i t dt


   

           
2

2 2

0

2 sin cosx t y t ix t y t t i t dt

     
 
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Theorem 1:  Let f be continuous in a domain D. Then the
following statements are equivalent.

(a)  f has antiderivative  F in D.
(b) Integrals of  zf  between two fixed points in D is

independent of path.
(c) The integral of  zf  along every closed contour

in D is zero.

Proof :     a b .  Let C be a smooth curve given by

     z t x t iy t    a t b   such that   1z a z  and   2z b z .

Given    'F z f z , Dz

Then by definition

           ' ' '
b b

c a a

f z dz f z t z t dt F z t z t dt   

Since fundamental theorem of calculus can be extended to
complex-valued function of a real variables we have

                      2 1

b

a
c

f z dz F z t F z b F z a F z F z      
Then the value of the integral is independent of the path.
If C is a contour made of finite  number of smooth curves

1 2, ,................... nC C C  joined end to end such that each nC

connects  nz  to 1nz   . Then

       
1 2

......
nc c c c

f z dz f z dz f z dz f z dz      

                      2 1 3 2 1... n nF z F z F z F z F z F z                 

   1nF z F z 

which is again independent of the path.

   cb 

Let C1 and C2 be two contour in D connecting two fixed points

1z  and 2z .
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Since
1

z z

z

ds z


 

we have    1 z z

z

f z f z dz
z




 

Then

         1 z z

z

F z z F z
f z f s ds f z

z z

  
  

  

         1 z z

z

f s f z ds
z



    
As f is continuous at z for 0 , 0 :

   f s f z   whenever s z  

Take z   . Then    f s f z 

So,

      1F z z f z
f z z

z z

  
    

 
whenever z  

i.e.  
     

0z

F z z f z
Lt f z

z 

  



, is    'F z f z ,  z D 

vvYou should note that the above theorem does not claim

that any of the statements is true for  a given  function

and  a given domain D. All it claims is that either all of

them are true or none of them is true.

Exam ple 1 :  The cont inuo us  funct io n   3f z z  has

antiderivative   4

4
zF z   throughout the complex plane.

Hence by  the above theorem, integral between two points

is independent of path.
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.4.2   Cauchy theorem :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In the previous section we have seen that when a
continuous function f has an antiderivative in a domain D,
the integral of  zf  around any given closed contour  lying
in  D is zero. In this section we will deal with a theorem
which give other conditions on the  function f, which ensure
that the value  of the integral of  zf  around a simple closed
contour is zero.

Theorem 1 (Cauchy theorem) : If f is analytic and f' is
continuous within and on a simple cloud contour C, then

  0
c

f z dz 
Proof :  Let C be given by the parametric representation

     z t x t iy t  , 0 t b 

Then by the definition

      '
b

c a

f z dz f z t z t dt 

             , , ' '
b

a

u x t y t iv x t y t x t iy t dt      

   ' ' '
b b

a a

ux vy dt i vx uy dt    

which can be written as

     
c c c

f z dz udx vdy i vdx udy        .................. (i)

we will express the line integrals on the RHS as double
integral using Green's theorem. As f' is continuous, the first
order partial derivatives of u and v are also continuous within
C. Hence by Green's theorem

 v x y

c D

udx dy v u dxdy    
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it encloses only points of D is called a simply connected

domain. Geometrically it mean that every simple closed

contour in D can be shrunk to a point  without going outside

the domain. A domain that is not simply connected is called

multiply connected.

The interior of a simple closed contour and a set of interior

points of a circle or ellipse or rectangle are simply connected

domains. The infinite strip 1 Re 2z   is another example of a

simply connected dfomain.

The annular domain  :1 2z z   is an example of a multiply

connected domain.

The following  theorem is an extension of Cauchy Gaursal

theorem to simply connected domain theorem. If f is analytic

throughout a simply connected domain D, then

   0
c

f z dz 

for every simple closed contour C in D.

This given the following corollary.

Corollary : If f is analytic throughout a simply connected

domain D, then f must have  antiderivative in D.

Proof :  Since f is analytic  throughout a simply connected

domain D. we have by the previous theorem

  0
c

f z dz 

for every simple closed contour C lying in D . Again we know

from theorem that this implies f has antiderivative in D.

Remark : An entire function is analytic throughout the

complex plane (which is simply connected). Hence by the

corollary any entire function possesses antiderivative.
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we have

     
1 2

0
c c c

f z dz f z dz f z dz    

Hence C, C1 , C2 are taken with positive direction. If you can

find  
1c

f z dz and  
2c

f z dz , than  
C

f z dz  is known

Example 2 : Let 1 :| | 4C z   and C2  be the boundary of the square

with sides  1, 1x y    . then

1 2

2 2

1

3 1 3 1C C

dz
dz

z z


  

since the integral is analytic on C1 and C2 and   in the domain

enclosed by these contour.

Check your progress

(d) Verify  example 2, by evaluating both the

integrals.

Exercise :  Use the principle of deformation to show that

 
2 , 1

0, 1n
C

i ndz

nz a

 
   



where C is any positively oriented simple closed contour
enclosing a.

Solution :  Let 1 :c z a r  , i.e. itz a re  , 0 2t   .

As 'a' is the only singularflity of the integral, by principle of

diformation of paths,  we have

   
1

n n
c c

dz dz

z a z a


  
For n=1,

 
 
 

1

2

0

'
n

c

z t dtdz

z t az a




 
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   
rC C

f z dz f z dz

z a z a


  
Then

         
r rC C C

f z dz f z dz f z f a
f a dz

z a z a z a


 

        ....... (i)

We have already shown

 
2

rc

f z dz
i

z a




Again f being analytic, is continuous at a. So for 0 , 0  :

   f z f a   whenever  az

we choose rc  such that  az , rcz
So,

       
2

r r rC C C

f z f a f z f a
dz dz dz rr rz a z a


     
   

Then (i) 

       
2 2

rC C

f z dz f z f a
if a dz

z a z a
 


   

  

we can choose 0  arbitrarily small, hence we conclude

   2
C

f z dz
if a

z a




i.e.    1

2 C

f z dz
f a

i z a




Example :  Consider the integral

  1

cos  2

2 1 3z

z
dz

z z



  

Let    
cos  2

2 3

z
f z

z




  . Then f is analytic within and on 1z  .
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   
sin cos

1

z z
f z

z

 




Then f is analytic in the domain bounded by 1C  and 2C  and

z = 2 lies in that domain . So, by Cauchy integral formula for

multiply connected domain.

     
2 1

1 1
2

2 2 2 2C C

f z f z dz
f dz

i z i z 
 

    ...................... (i)

           33
2

sin 2 cos 2 1 sin cos 1 sin cos

2 1 2 1 2 2 1 2z z

z z z z

i z z i z z

     
  

  
  

     

Again let   sin cos

2
g z

z

 




Then g is analytic within and on 3
2z  . So, by Cauchy integral

formula

   
3

2

1
1

2 1
z

g z
f

i z





   3
2

sin cos 1 sin cos

1 2 2 1 2
z

z z z z
dz

i z z

   




 
 

  

  3
2

1 sin cos
1

2 1 2
z

z z
dz

i z z

 





 

 

C2

C1

1       2    3
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Proof : Since f is continuous in D and

for every closed contour C in D . we have by theorem.1 of

section 4.4.1 that f has antiderivative F in D. But antiderivative

is an analytic function, and we have just concluded that

derivative of an  analytic function is analytic. Consequently f

is analytic in D.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.5.3 Liouville's  theorem__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Here we will show that no entire function except a constant is

bounded in the complex plane. First we prove the following

simple result known as Cauchy's inequality.

Result  (Cauchy's inequality) :If f is analytic within and on a

circle C centred at a. and radius R, such that   Mz f , z C  ,

then

    !n

n

n M
f a

R
  1,2,..........n 

We have

       
  1

!

2
n

n
C

f z d zn
f a

i z a 
  1,2,..........n 

which gives

       1

!

2
n

n
C

f zn
f a d z

i z a 


    1

!
2

2
n

n

n M
f a R

i R


  

    !n

n

n M
f a

R
 

Theorem 1 (Liouville's theorem) : If f is  entire and bounded in

C then f(z) is constant in C.
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that is h is an entire bounded function. Hence by Liouvilli's
theorem h(z)=constant

h(z) = c (constant)

 
 

f z
c

g z
 

   f z cg z 

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.5.4 Fundamental theorem of Algebra__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Statement : A polynomial (of positive degree) over  C has at

least one zero in C That is if

  2
0 1 2 ......... n

nP z a a z a z a z     , 0,a   1n 

then there exists a point  : 0a P a C

Proof : If possible    0P z   z C  ,
then the function

   
1

Q z
P z

   is an entire function.

Now P(z) beeing a polynomial is non constant and entire.

Hence by Corallary 1 of the previous section P(z) is

unbounded.

So,

    0
z z
Lt P z Lt Q z
 

 

So, we can find an  0 : 1Q z R , :z z  R

Also Q (z) being continuous, is bounded in z R  Thus Q(z)
is an entire bounded function, by Liouvilli's theorem. That
means P(z) is constant. But this is a contradiction. Hence there
exists some  : 0a C P a 

Exercise : A polynomial of degree  1n n   has n zeros.



31

   
2

0

1

2
if a f a re d


 


  

Hence the theorem

Theorem 2 : If f is analytic in the neighbourhood z a   such

that    f z f a , z  Then f(z) has constant value f(a)

throughout that neighbourhood.

Proor : Let :c z a r  ,  r 

then by the  previous theorem

   
2

0

1

2
itf a f a re dt




 

   
2

0

1

2
itf a f a re dt




  

     
2 2

0 0

1 1

2 2
itf a f a re dt f a dt

 

 
    

   f z f a z   

     
2

0

1

2
itf a f a re dt f a




   

   
2

0

1

2
itf a f a re dt




  

   
2

0

0itf a f a re dt

     

The integral being non-negative continuous function.

we conclude    itf a re f a 

Thus    0 :| |f z f z z a r   

But r is any number : 0 r 
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Then  1f z  is the maximum in 1N . So by previous theorem f

is constant in 1N , i.e.    1zz ff  , 1Nz

But 2z N ,      1 2f z f z f z  

Proceding in this way, we find    0 nf z f z

i.e.    f a f b

But b is an arbitrary point in D.

Hence    f z f a z D 

Consiquently f is constant in D.

Further, suppose f is continuous on the boundary of D. Then f
is continuous on 

__

D . Consider the function |f|. Now |f|is
continuous  on 

__

D  which is closed and  bounded. We know
that a continuous real-valued function defined on  a closed
and bounded  subset attains its maximum. Since |f| does not
attain its maximum in D, so  it must attain its maximum on
the boundary.

Example 1 :  Let  u(x, y) be a non-constant harmonic function in

a domain D, such that it is continuous on D . Then  ,u x y

attains its maximum in D .

Let v(x,y) be the  harmonic conjugatie of u(x, y) in D. Then

f=u+iv is analytic in D and continuous in D . Let    f zg z e .

Then g(z) is non-constant and analytic in D and continuous on D .

Hence maximum of  zg  occurs on D . But      ,f z u x yg z e e 

and  ,u x ye  is an increasing function of u(x,y). Hence maximum

of  ,u x y  occurs on D .

Example 2 :  Let      , ,f z u x y iv x y   be analytic in a domain

D and continuous on D . Then the function    ,2 2 u x yx y e  will

have maximum on D .
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D.  If   0f z   for same z D , then minimum of  f z  is zero

and it is attained on D . Otherwise    
1

g z
f z

  is non-

constant analytic in D and continuous on D . Hence maximum

of   g z  is  
1

f z  is attained on D . So minimum of  f z

occurs on D .

Example 1 :  If   0z f  at some point in D, then  zf   need not

attain its minimum on D . Let   zz f  and  1D z z  . Then

  00 f  on

On  : 1D z z   ,  iez ,   20

So on  D ,   if z z e  

 | | 0f z   on D

So, minimum of  f z  does  not occur on D .

Example 2 : Let  f z   be non constant analytic in a domain

 D z z r   and continuous on D  such that  f z m on D .

If  0f m  show that there exists atleast one zero of  f z  in D.

Solution : Suppose   0f z  Dz .  Then by minimum

modulus theorem, minimum of   zf   occurs on  :D z z r   .

But this is a contradiction, since we have   m0 f  and

 f z m  on D . Hence   00 f  for at least on z in D.

Check your progress :

(h) Let   f z  be analytic in a domain D and

continuous on D . If  f z k , z D   show

that  f z  vanishes at least once in D.
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If equality hold in any of the above inequalities, then  zg

attains maximum inside D. Then  we get g(z) = constant = k

(say) which gives f(z) = kz.

Exercise : Let  f(z) be analytic in z a R   having a zero at 'a'

and suppose   f z M :z z a R   . Then

  M z a
f z

R


 , :z z a R  

and  '
M

f a
R



Solution : Consider the function    g z f z a  then g is analytic

in z R  such that g(0)=0 Also :z z R  ,    g z f z a R   ,

 z a a R   . So, we can apply Schwarz Lemma to g(z) then

  M z
g z

R
 , :z z R 

and  '
M

g a
R



  M z
f z a

R
   , :z z R 

and  0
M

f z
R

 

   M z a
f z

R


  , :z z a R  

and  '
M

f z
R

 , replacing z by (z - a).

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.8 Let us Sum up
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In this section we have seen how the concept of

integration of real function can be extended to complex
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
3. References :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

(i) R.V. Churdvill & J.w. Brewn, complex Variables and

Applications, Mc. Grow Hill.

(ii) Murray R. Spiegel, theory and Problems of Complex

Variables (schaum's outline Service). Sl (Metric) edition,

1981, Mc. Grow Hill.

(iii) H.S. Kasana, Complex variables,  Theory and

Applications, Prentice Hall of Inda.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4. Possible Answers to the CYP :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

(a) Here   2 , 0 1z t t it t   

   / 1 2z t it dt  

      
________

2,f z z f z t z t t it    

so,   
/__

2

0

1 2
C

z dz t it it dt    (using definition of

integral)

(b) (i)   zf z e  has antiderivative 
ze


. Use theorem 1 of

section 4.4.1.

(ii)    3
2f z z   has antiderivatives 

 4
2

4

z 
. Use

theorem 1 of section 4.4.1.

(c)   2 sinf z z z   is analytic everywhere and

 / 2 cosf z z z   is continuous everywhere.
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5. Model question :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

1. Evaluate the following integrals :

(a)  
2 2

1

1 i dtt  , (b) 


6

0

it2 dte ,

(c)  3

0

Re 0te dt z


 

2. Let w(t) = u(t) +iv(t) denote a continuous complex valued

function defined on [-a, a].

(a) If w(t) is even, show that

   
0

2
a a

a

w t dt w t dt


 

(b) If w(t) is odd, show that

  0
a

a

w t dt




3.  Evaluate

(a)
2

c

z
dz

z


  where C is the semi circle given by

2 iz e  ,  0   

(b)  1
c

z dz  where C is the arc from z=0 to z=2

consisting of the semi-circle 1 iz e   ,  2   

4. Evaluate

 
c

f z dz

where   1, 0

4 , 0

y
f z

y y


  

and C is the arc from z=-1-i to z=1+i, along the curve 3y x .
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 f o m and  f z m z R  . If f(z) is analytic in R,

show that there exists at least one point on R  where

the function  f(z)  is not continuous.

11. Let  f(z) = u(x, y) + iv(x, y) be analytic in a domain D

and continuous on D . Then show that the function :

   ,2 2 u x yu v e  will have maximum on the boundary of

the  domain.

12. Suppose u(x, y) is harmonic function in a domain D and

continuous on D . Then show that u(x, y) attains its

maximum on the boundary  of D. Furthere if u(x,y) does

not vanish  in D, show that the minimum also occurs

on the boundary of D.

13. Let  u(x, y) = 4xy + x + 1 be defined in 2z  . Show that

 ,u x y assume its maximum on 2z  , while the

minimum occurs in 2z  . Explain.

14. Let f(z) and g(z) be analytic in a domain D and continuous

on D . If  f(z) and g(z) coincide on the boudary of D, then

show that  f(z) and g(z) also coincides in D.

15. Let f  be analytic in 5z  , and suppose that   10f z 

for all points on the circle 1 3z   . Find a bound for    3 0f .

16. Let f(z) be an entire function with

      iz1zz  fff  for each z.

show that f(z) is constant.
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_______________________________________________________________________________________________________________________________________________________________________________________
BLOCK - 2 :  SERIES [12 Marks]
_______________________________________________________________________________________________________________________________________________________________________________________

STRUCTURE
2.0 Objective
2.1 Introduction
2.2 Taylor Series

2.2.1 Zeros of an Analytic function
2.3 Laurent Series

2.3.1 Classification of isolated singularities
2.4 Residues

2.4.1 Cauchy's residue theorem
2.4.2 MNethods to calculate residue

2.5 Applications of Cauchy'sf residue theorem
2.5.1 Argument principle
2.5.2 Rouche's theorem
2.5.3 evaluation of integral

2.6 Let us sum up
1.  Let us sum up
2.  Key words
3.  References
4.  Possible Answers to the CYP
5.  Mode Questions

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.0 Objective__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 After going through this block will be able to
 Obtain Taylor expansion of certain functions
 Obtain Laurent expansion of certain functions in

deleted neighbourhood.
 Identify singularities of a function.
 Obtain residue of a function at its singularities.
 Obtain Contour Integration Using Cauchy's

Residue theorem
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 Evaluate some special kinds of real integrals

 Prove Rouche's theorem applying Cauchy's

Residue theorem.

 Prove Argument Principle applying Rouche's

theorem.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.1 Introduction__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In Block 2 you have studied about power series and its

uniqueness. In this unit you will see that if a function is

analytic at a point then it has a power series representation

in some neighbourhood of the point. Even for a function

analytic in a deleted neighbourhood we will obtain series

representation. The first type will be called Taylor's series

and the second type will be called Laurent's series. You

know about singularities. Here we will discuss different

types of isolated singularities. We will define residue of

function at its singularities. We will develop methods to

find residue. The most Important result  of this unit is the

Cauchy's residue theorem. We will use this theorem to

evaluate  cer ta in real  integrals .  We will  a l l  discuss

Argument principle and Rouche's theorem as consequence

to Cauchy's residue theorem.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.2 Taylor Series__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

We already observe that a power series interior to its

circle of convergence represents a differntiable function. If
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the power series is complex. it will represent an analytic

function. In this section we will obtain the converse of that

result.

Theorem 1 : If f is analytic at a point z, then there exists a

neighbourhood 1z z R   of 0z  where f(z) has power series

representation

   0 1
0

,
n

n
n

f z a z z z z R




    ....................... (i)

such that 
 0

, 1,2
!

n

n

f
a n

n
  , n = 1, 2,

Proof : Since f is analytic at 0z then exists a neigbourhood

0| |z z R   of 0z , where f is analytic. We will prove the result

for 0z =0. Then the neighbourhood is |z|<R. Let C denote the

positively oriented circle | |z r R   .

i.e   , 0 2itz re t   

 

Then by Cauchy's integral formula

   1

2 c

f s
f z ds

i s z


 ,  :z z r 

        
 

 
1

2 1c

f s ds

zi s s







R

O
r

C
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    11

1
2 c

f s z dssi s


 

        
   

0

1

2

n

nC

f s z dssi s





  , :z z r 

now 
z zz rs s r

  

So, we can find : 0 1M M   and z Ms 

We have 
n

nz Ms     0 1M 

and 
0

nM


 converges.

Hence by Werierstress M-test the series  
0

n

n

z
s




 converges

uniformly in z r

So using theorem- 2 of section 3.4, Unit III
we have

   
1

0

1

2
n

n
n c

f s ds
f z z

i s






   , :z z r 

         
 

1
0

1

2
n

n
n c

f s ds
z

i s






 

        
   

0 0

0 0

! !

n n
n n

n n

f f
z z

n n

 

 

  

Since C can be any circle with radius r<R, the result obtained

is valid z : z R   . If f is an antire function, than R  .

Representation (i) is called Tayler series of f(z) about 0z . For

0 0z  , it is called Maclaurin series for  f(z) .
Example 1 : Consider the Maclarin series  of the function :

(a) ze , (b) zsin , (c)
1

1 z
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Solution : (a)   zf z e  is an entire function, so the series
expansion will be valid for all z in the complex plane.

As  n zf z e n

 0 1nf  ,   n

Hence Maclaurin, series is 
0

n

n

z

ni






(b) f(z)= sinz is also an entire function.

Here   cosIf z z ,    sinIIf z z  ,    cosIIIf z z  ,

  sinIVf z z

So,     n1n2 10 f  and   00n2 f , n = 0, 1, 2, ........

Hence Maclaurin series is    
2 1

0

1
2 1 !

n
n

n

z

n








(c)     11
1

1
f z z

z
  



0

n

n

z




 , 1z   (using binomial expansion)

Example 2 :  Find Taylor expansion of cosz about 2z 

Solution : We have    
2 1

0

sin 1
2 1 !

n
n

n

z
z

n





 
 , :z z 

Replacing z by  2z  , we get

   
 
 

2 1

0

2sin 12 2 1 !

n

n

n

z
z

n










  

 , :z z 

i.e.
   

 

2 1

0

1 2cos
2 1 !

nn

n

z
z

n

 




 
 



   
 

2 11

0

1 2cos
2 1 !

nn

n

z
z

n

 




 
 

 , :z z 
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Note : You can also get the above expansion by finding  2
nf

(n = 0, 1, 2, ........) for the function zcos .

C heck your rogress:

(a) Find the Maclaurin series for zcos

(b) Find the Taylar series for zsin  about z  

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.2.1  Zeros of an analytic function :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Definition  :  Let f be analyt ic at a point 0z ,  suppose

         1
0 0 0 0..... 0mI IIf z f z f z f z     b u t    0 0mf z  ,

but    0 0mf z   then f is said to have a zero of order m at z0 .

Theorem 1 : Let f be analytic at z0.

Then      0 0 .....( )
m

z f z z z g z i  

where g is analytic at 0z  and  0 0g z  .

Proof :  Since f is analytic at 0z , there exists a neighbourhood

0z z R   of 0z  where f(z) has Taylor series expansion.

     0
0

0 !

n
n

n

f z
f z z z

n





  , 0:| |z z z R  

Suppose f has a zero of order m at  0z , then   0z0 nf  for

n = 0, 1, 2,....(m+1)

     0
0!

n
n

n m

f z
f z z z

n





   , 0:| |z z z R  

     
   

1
10 0

0 0 ..........
! 1 !

m m
m mf z f z

z z z z
m m


    



     
   

1
0 0

0 0 ..........
! 1 !

m m
m f z f z

z z z z
m m

 
     

  

   zgzz m
0 .



7

where      
   

1
0 0

0 ....
! 1 !

m mf z f z
g z z z

m m



   


is analytic at 0z  and    0
0 0

!

mf z
g z

m
 

Conversely, Let f(z) has expression (i). As g(z) is analytic at 0z ,

there exists some neighbourhood 0z z R   of 0z  , where g(z)
has Taylor series expansion

     0
0

0 !

n
n

n

g z
g z z z

n





  , 0:| |z z z R  

Then  by (i)

       0
0 0

0 !

n
m n

n

g z
f z z z z z

n





   , 0:| |z z z R  

By uniqueness of Power series, the above is the Taylor series

for f(z). Hence we have

         1
0 0 0 0. . . . 0mi iif z f z f z f z    

and       0 0! 0mf z m g z 

consequently f has a zero of order m at 0z .

An important conclusion of the above theorem is the following

Corollary.

Corollary : Zeros of an analytic function are isolated.

Proof :  Let 0z  be a zero of order m of an analytic function f.

Then there exists some neighbourhood 0z z R   of 0z such
that

     0

m
f z z z g z 

where g(z) is analytic at 0z  and  0 0g z  . As g is analytic at 0z ,

it is continuous at 0z . As  0 0g z  , there exists a neighbourhood

of 0z , say 0z z R   where   0g z  .
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Consequently

     0 0
m

f z z z g z   , 0: 0z z z r   

Thus,   0f z   in a deleted neighbourhood of 0z , i.e. 0z  is an
isolated singularity of f.

Corollary : If f(z) and g(z) are analytic at 0z  and have zeroes of

order m and n respectively at z= 0z , then      h z f z g z has a

zero of order m + n at 0z .

Check your progress

(c) Find order of zeroes of the function zz3 sin  at the

origin.

(d) Locate the zeroes of the function and determine

their order

(a)  2z1 , (b) zz3 

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.3 Laurent Series__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

If a function fails to be analytic at a point a, then we cannot

apply Taylors theorem. However it is possible to find a series

representation of f called Laurent Series expansion involving

both positive and negative powers of  (z - a).

Theorem :  Let f be analytic  throughout an annular domain

1 2R z a R    centred at a, and C denote any positively

oriented simple closed contour around a and lying in that

domain. Then at each point in the domain f(z)  has the series

representation.

   
 0 1

n n
n n

n n

b
f z a z a

z a

 

 

  


  , 1 2:z R z a R    ... (i)
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where

 
  1

1

2n n
c

f z dz
a

i s a 
 ,  n = 0, 1, 2, .............

 
  1

1

2n n
c

f z dz
b

i s a  
 ,  n = 1, 2, ................

Series (i) is called Laurent series expansion of f(z) about z = a.

 
0

n

n
n

a z a




 is called the regular part and  1

n
n

n

b

z a



 
  is called

the singular part of f(z).

Proof : Consider the circle 1 1:c z a r   and 2 2:c z a r   such

that 1 1 2 2R r z a r R     .

 

By Cauchy integral formula for doubly connected domain, we

have

     
2 1

1 1

2 2c c

f s ds f s ds
f z

i s z i s z 
 

  

Consider the first integral,
we have

 

1 1

1
z as z s a
s a


     

C2

C1
R1 a

z

R2
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 

1
1

1
z a

s a s a

     

 

2
1

1 .........
z a z a

s a s a s a

             

   
 
 

2

2 3

1
...........

z az a

s a s a s a


   

  

So,

 
 

 
 

2 2 2 2

2

2 3

1 1
...

2 2 2 2c c c c

f s ds z ads z a ds ds

i s z i s a i is a s a   


   
      

   2

0 1 2 ...a a z a a z a     

where

 
2

1

2n n
c

ds
a

i s z



Next consider the scond integral.
We have

 

1 1

1
s as z z a
z a


      

         

1
1

1
s a

z a z a

      

          0

1
n

n

s a

z a z a





      


So,

           
   

1 1
0

1 1

2 2

n

nc c

f s ds f s s a
ds

i s z i z a z a 





       
 

         
  
 

1

1
0

1
,  sin 1

2

n

n
n c

f s s a s a
ds ce

i z az a






   
     


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          
  

1

1
0

1 1

2
n

n
n c

f s s a ds
iz a 






  


 

          1

n
n

n

b

z a





 




where
 

 
1

1

1

2n n
c

f s ds
b

i s a  


By the principle of deformation of path 1c and 2c  may

be replaced by a simple closed contour c entirely lying in the

annular domain.

Remark :  If f fails to be analytic at a , but is otherwise

analytic in the disk  2z a R  , the radius 1R  can be chosen

arbitarily small. Then validity of the series is 20 z a R   .

Again if f is analytic at each point in the finite plane exterior

to the  circle 1z a R  , then the condition of validity is

1R z a   . Also if f is analytic everywhere in the finite

plane except at a, then the series is valid in the domain

0 z a   .

Example : Obtain the Laurent series of the functions :

(a) 1
ze , (b) 3 1coshz z , (c)  2

1

1z z

Solution :  (a) we have Maclaurin series for ze  as

0

n
z

n

z
e

ni





 , z 

Replacing z  by 1
z . we have Laurent series for 1

ze  as

1

0

1
z

n
n

e
z ni





 , 0 z 
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(b) We have  replacing z by 1
z  in Maclaurin series for coshz

       2
0

11cosh
2 !n

n
z z n





 , 0 z 

 
3 2

3

0

1cosh
2 !

n

n

z
z z n





  , 0 z 

          
3

2 3
0

1
2 2 ! n

n

zz
n z






   0 z 

(c)  The function is not analytic at z=0 and z=1.

First consider the domain 0 1z  .
then

    1

2 2 2
0

1 1 1
1

1
n

n

z z
z z z z






  
 

   
2

2
0

1 1 n

n

z
z z






   , 0 1z 

Next consider the domain 1 z  .
Then

   2 3

1 1
11 1z z z z

 
 

     1

3

1 11 zz


  

     3
0

1 1
n

n
zz





 

    3
0

1
n

n z






  , 1 z 

Check your progress :
(e) Derive Laurent series for the functions

(i) 4

sinz z

z


, (ii) 2

2

z
1z sin



13

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.3.1 Classification of singularities :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

You know that any singularity of a function can be
classified into either isolated singularity or non-isolated
singularity. In our study we will be mainly interested in isolated
singularities. There are three types of isolated singularities-
removable singularity, pole and essential singularity.

Suppose a is an isolated singularity of f then there

exists a deleted neighbourhood of a, z a R   where f(z)

has Laurent series represefntation.

   
 0 1

n n
n n

n n

b
f z a z a

z a

 

 

  


  , 0 z a R     ...... (i)

Definition (Removable singularity) : If the principal part of (i)

is zero, z=a is said to be removable singularity.

e.g.  
z

z
z

sin
f 

Pole : If the principal part has finite number of terms, then z = a is a

pole of f.

eg.  
 2

1

2
f z

z



. Then z=2 is a pale of f.

If m is the largest integer such that 0mb  , then f is

said to have a pole of order m. In the above example z=2

is a pole of order 2. A pole of order 1 is called a simple

pole. For the function.

 
2 2 3 3

2 2

z z
f z z

z z

 
  

 
, 0 2z  

z = 2 is a simple pole.

Definition (Essential singularity) : If the principle part contains

infinite number of terms, then z=a is called an essential

singularity.
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Eg.  
1

2 3

1 1 1
1 . . .

2! 3!
zf z e

z z z
       , 0 z 

So, it has z=0 as essential singularity.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.4 Residues__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Definition : Let  a  be an isolated singularity of a function f.

Then there exists a deleted neighbouhood 0 z a R    where
f(z) has Laurent series expansion.

   
 0 1

n n
n n

n n

b
f z a z a

z a

 

 

  


  , 0 z a R  

Here b, i.e. the coefficient of 
1

z a
 is called the residue of f at its

singularity a.

We know the coefficient nb 's are given by

 
  1

1

2n n
c

f z dz
b

i z a  
 , n = 1, 2, 3, ................

Where c is any single closed contour lying in the annulus

0 z R  .

Hence residue  at z=a.

 1

1

2 c

b f z dz
i

   ................. (i)

Thus we observe that if the contour integral is known, the

residue can be found and conversely.

Example : The function   2z
1

ez f  has singularity only at  z =

0. By Laurent series expansion.

  2
0

1

!n

f z
z n





 , 0 z 
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Residue at z = 0, i.e. coefficient 0z
1 

Consequently   2 .0
c

f z dz i  for any

simple closed contour c encircling the origin.

Theorem 1 : If a function f(z) has an isolated singularity at a

and f(z) is even in (z - a), i.e. f(z - a) =  f(-(z - a)),

then

 Re 0
z a
s f z




Proof :  Since f is even, the Laurent series expansion of f about

a cannot have odd power of (z - a). Hence the result

Example : Consider the function  
2

2

sin

sin

z
f z

z z


It has isolated singularity at z=0

As f is even  Re 0
z o
s f z




__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.4.1   Cauchy residue theorem :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

We know from Cauchy's theorem that if a function f is

analytic within and on a simple closed contour C, then integral

of f(z) around the contour is zero. However if f has finite

number of singularities within C, then the value of the integral

depends on the residue of f at its singularities within C. The

following theorem pricisely states that.

Theorem 1 (Cauchy residue theorem) : Let C be a simple closed

contour described in positive sense. If f is analytic within and

on C except for finit number of singularities within C, then

  2
c

f z dz i [sum of the residue of f at the singularities]
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Proof : Let the singularities of f within C be z1,z2,....zk. We
con si d er  p osi t i v el y  or i en t ed  ci r cl es Cr centred at each rz

which are interior to C and no two of them have points  in
common. Then the circles C1, together with the simple
closed contour C, form the boundary of a closed region
throughout which f is analytic and whose interior is a
multiply connected domain, Then by Cauchy-Goursat
theorem for multiply connected region we get

   
1

0
r

k

rc c

f z dz f z dz


  

   
1

r

k

rc c

f z dz f z dz


  

 
1

2 Re
R

k

z z
r

i s f z


   using (i)

Thus from the above theorem we observe that we can find the
value of an integral without practically evaluating it. You need
simply to locate the singularities of the function within the
contour and find the residues at these singularities.

Example : Consider the function   1

1
f z

z




The only singularity of f(z) is at z=1.

f(z) is in Laurent series form, so the residue at z=1 is observed

to be 1.

Hence   2
c

f z dz i  for any simple closed contour C around

the point z=1.

If f is analytic within, on and outside a simple closed
contour C, except a finite number of singularities within
C, then the integral of f can be evaluated around c simple
by finding the residue of a certain related function at the
origin. The fact is proved in the following theorem.
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Theorem 2 :  If f is analytic everywhere in the  finite complex

plane except for a finit number of singularities within a simple

closed contour C, then

   20

1 12 Re
z

c

f z dz i s f zz




   
 

Proof : Consider the circle 1z R  such that the contourf c lies

interior to it. Let 0 0c z R  , such that 0 1R R

Then f(z) has Laurent series expansion

  n
nf z c z





 , 1R z   ............... (i)

where
 

0

1

1

2n n
c

f z dz
c

i z   , 0, 1, 2,.......n      (ii)

For, n = -1, we have

  12
nc

f z dz ic  ...................... (iii)

Replace z by 1
z  in (ii). Then we have

 1 n
n

c
f z z





 , 1

1
R

z
 

 2 2

1 n
n

c
f z

z z






  ,  
1

10 z R 

This is the Laurent series expansion of  2

1
f z

z
 around its

singularity  z=0

  120

1
Re
z
s f z c
z 

  ...................... (iv)

From (iii) and (iv)

   
0

20

1 12 Re
z

C

f z dz i s f zz




   
 
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Since f is  analytic throughout the closed region bounded by c
and 0c , by principle of deformation of paths, we get

   
0

20

1 12 Re
z

C

f z dz i s f zz




   
 

Example : Evaluate

 
5 2

1c

z
dz

z z




using single residue method, where : 2c z 

Here      
5 2

1

z
f z

z z






we have

   2

5 2
1 1

1 1 1
zf zz

z z






       
5 2 1

.
1

z

z z






   15 2 1 zz
  

  25 2 1 .............z zz     0 1z 

5 3 3 ...............zz   0 1z 

 20

1 1Re 5
z
s f zz

 

Hence

   20

1 12 Re
z

c

f z dz i s f zz





     2 5 10i i  
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Check your progress

(f) Evaluate using single residue method

(i) 21c

dz

z , (ii)
5

31c

z
dz

z

 where : 2c z 

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.4.2  Method to calculate residue :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In this section we will discuss some methods to evaluate

residue of function at its singularities. Note that residue at a

removable singularity is zero.

Method 1 : Sippose 0z  is a singularity of a function f. Write the

appropriate Laurent series  expansion of f(z) in the deleted

neighbourhood of 0z . Then the coefficient of 
0

1

z z  is the

residue of f(z) at 0zz 

Example 1 :   1

1
f z

z




The function has singularity at z=1. The f(z) is in  Laurent series

form, so residue of f(z) at z=1 is 1

Example 2 :  
z

z
z

cos
f 

it has singularity at z=0

Writing the Maclaurin series for cosz we have

 
2 4 6cos 1

1 ........
2! 4! 6!

z z z z
f z

z z

 
      

 
, 0 z 

3 51
.......

2! 4! 6!

z z z

z
     , 0 z 

 
0

Re 1
z

s f z


 



20

Example 3 :  
 4

2

ze
f z

z






z=2 is a singularity. We find the Laurent series expansion in

0 2z  

 
 

 

 

22

4 4

.

2 2

zze e e
f z

z z

  

 
 

 
     2 32

4

2 2
1 2 .......

2! 3!2

z ze
z

z

          
   

       
2

4 3 2

1 1 1 1
...

3! 22 2 2! 2
e

zz z z

           

Hence  
2

20

1
Re

3! 6z

e
s f z

e




   

Check your progress :
(g) Find the Laurent series and calculate residues

(i)  1zz

1

 , (ii) z
1zcos ,   (iii)  24 z1z

hz


sin

Method 2 :

Here we develop a method to calculate residue at poles. First
we prove the following theorem .

Theorem :  The function f(z) has a pole of order m at a iff f(z)
can be written in the form

   
 m

z
f z

z a






where  z  is analytic  at a and   0a 

Proof : Suppose f(z) has a pole of order m at a. Then there is

some deleted neighbourhood 0 z a R    where Laurent
series of f(z) is
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        
   

1 2
2

0

. . .
n m

n m
n

bb b
f z a z a

z a z a z a





     
  

 ,  0bm 

which gives

 
 

     1 2

1 2
0

1
...

n m m m

n mm
n

f z a z a b z a b z a b
z a


  



 
        

  


        
 

 maz

z






where

       1 2

1 2
0

...
n m m m

n m
n

z a z a b z a b z a b


  



       

is analytic at a and  0 0mz b  

Conversely, suppose    
 m

z
f z

z a





, where   0a   and  z

is analytic at a.

As   z  is analytic at  z ,

             
   

1
1''

' ... ....
2! 1 !

m
ma a

z a a z a z a
m

 
  


       



   
 

   
   

     
   

1 1

... ....
1 ! ! !

m mm

m

a a a a
f z z a

m z a m m az a

    

       
  

      z : 0 z a R  

This is the Laurent expansion of f(z).

Hence f(z) has a pole of order m at z=a.

The residue of f(z) at z=a is

   
 

1

1 !

m a

m

 


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which can be written as

     
1

1

1

1 !

m
m

m
z a

d
z a f z

m dz



 
  

Hence for a function f(z) having pole of order m  at a point z=a

       
1

1

1
Re

1 !

m
m

mz a z a

d
s f z z a f z

m dz



 
   

For simple pole

       aaazzs m

az



ffRe

Example 1 :  
9z

1z
z

2 


f

 zf  has singularities at 3z i 
we write

    
1

3 3

z
f z

z i z i




 

First let  
i3z

1z
z






then    
i3z

z
z




f

   
3

3 1 3 1 3
Re 3

3 3 6 6z i

i i i
s f z i

i i i




  
   



Next let  
i3z

1z
z




 ,  then    
i3z

z
z




f

   
3

3 1 3 1 3
Re 3

3 3 6 6z i

i i i
s f z i

i i i




   
    

 

Example 2 :  
   3ziz

16z
z 2

2




f

 zf  has singularities at z = i, z = -3
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First let  
 

2

2

16z
z

z i
 




then    
3

z
f z

z






   
 

 
23

25 8 69 16 25 25 3Re 3 2 29 1 6 8 6 64 363z

i
s f z i

i ii





       

    

Next let  
2 16

3

z
z

z
 




Then    
 2

z
f z

z i






 f z  has pole of order 2 at z=i

       21
Re

2 1 !z i z i

d
s f z z i f z

dz 
    

 1

1! z i

d
z

dz



   

   
 

2

2

3 2 16

3
z i

z z z i

z


   
 

  

31 2 i  

Check your progress:

(h) Find  the residue at poles of the functions

(i) 
1z

2z2




, (ii) 
3

1z2

z









,     (ii) 22

z

z

e



Method 3 : For this method first we prove the following

theorem.
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Theorem 2: If a function f(z) is of the form    
 

p z
f z

q z
 , where

p(z) and q(z) are analytic at a and   0p a   then z=a is a pole of

order m iff q(z) has a zero of order m at z=a.

Proof :  we know that q(z) has a zero of order m at z=a iff it is of

the form

     m
q z z a z 

where  z  is analytic at a and   0a 

then

   
 

 
     

 1
m m

p z p z
f z z

q z z a z z a



  

 

where    
 

p z
z

z



  is  analytic at a and   0a  .

But by the last theorem we know that the  form

   
 m

z
f z

z a






ensures that f(z) has a pole of order m at z=a.

Let us consider the particular case of q(z) having a simple zero

at z=a. Then q(a)=0 but  ' 0q a  . We write      q z z a z  ,

where  z  is analytic at z=a and   0a  .

Actually    'a q a 

Then

   
 

 
   

 
 

 

p z

zp z p z
f z

q z z a z z a




 
 
   

 

So, f(z) has a simple  pole at z=a.
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By Method 2 :

   
 

 
 

Re ,
'z a

p a p a
s f z

a q a
     'a q a   

Example 1 :   cos
cot

sin

z
f z z

z
 

Let p(z) = cosz and q(z) =sinz

then q(z)=0 when z n  0, 1, 2,....................n   

So,    
 

 
 

1
Re 1

' 1

n

nz n

p n
s f z

q n





  



Example 1 :  
3

2

2

2 1

z z
f z

z z

 


 

Let   3 2p z z z    and   2 2 1q z z z  

q(z) = 0 when z = 1 and  ' 1 4 0q  

Also  1 4 0p  

Hence f(z) has a simple pole at z=1.
So,

   
 1

1 4
Re 1

' 1 4z

p
s f z

q
  

Check your progress :
(i) Find residue at singularities of

(a)  
2 1

1

z

z z


 , (b) 

sin

cos

z

z
, (c) sec z

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.5 Application Cauchy residue theorem__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
In this section we will  derive some results based on the
Cauchy residue theorem. We will also use residue calculus
to evaluate certain definite real integral and real improper
integrals.
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___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.5.1 Argument Principle__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Definition : A function whose only singularities in the finite

complex plane are poles is called a meromorphic function.

All rational functions, tanz, secz, 
1z

1


 are examples of

meroorphic functions. By definition, every analytic function
is meromorphic.
Let us consider a function f which is meromorphic in the
interior of a simple closed curve C and such that it is analytic
and has no zeros on C. Let   denote the  image of C under f.
As f(z) is not zero on C,   will not pass through the origin. As
a point z traverses along the positive direction of C the image
point traverses along   determing its orientation.
Let 0w be an arbitrarily fixed point on   with 00w arg  Let
a point w traverse   once in positive direction starting from
the point 0w  . Let 1  be the arg of w after it returns to the
origin   position 0w . So, the change in arg. of w as w
completes one traversal along   in positive sense is 01  .
As w= f(z) this change in arg of w is actually the change in

 zfarg  as z describes C once in the positive direction starting
from any point 0z in C. We  write change is arg as  zc f

  1 0c f z    

where 0  is the initial value of arg and   is the value of arg

after the point z completes one traversal along C in positive

sense. Clearly this value is an integral multiple of 2 .

Therefore  1

2 c f z

  gives the number  of times f(z) winds

around the origin  in the w-plane whem z describes C once in

positive sense. Hence this number is called winding number  of

  w.r.t. the origin w=0. It is taken to be positive ifwinds around

the origin in counter clockwise sense and negative otherwise.

Winding number is zero if   does not enclose the origin.
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Theorem 1 :  Let C be a simple closed contour. If  f  is

memomorphic inside C, analytic and non-zero an C, then

 
 
'1

2 c

f z
dz N P

i f z
 

where N = number of zeros of f within C
and P= number of poles of f within C.

Note : A zero of order m will be counted as m zeros and

similarly a pole of order p will be counted as p poles. This is

termed as counting multiplicity.

Proof : Suppose f(z) has a zero of order m at z=a.
Then

     m
f z z a g z 

where g is analytic at a and   0g a 

Hence

 
 

 
 

' 'f z g zm

f z z a g z
 



As   0g a  , 
 
 
'g z

g z  is analytic at z=a  and hence  
 
 
'f z

f z has a

simple pole at  z = a with residue m.

We have seen that zero of f(z) is a pole of 
 
 
'f z

f z  and the residue

is the  order of the zero.  Consequently the sum of the  residues

at poles of 
 
 
'f z

f z  is N.

Next suppose f(z) has a pole of order  n at z=b, then

   
 n

z
f z

z b






where  z  is analytic at  z=b and   0b 
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Hence

 
 

 
 

' 'f z zn

f z z b z




  


As   0b  , 
 
 
' z

z


  is analytic at z = b and hence 

 
 
'f z

f z  has a

simple pole at z= b  with residue - n.

As above the sum of residues at poles is -P.

Then by Cauchy residues theorem we have

 
 
'1

2 c

f z
dz N P

i f z
 

Example :  Consider the function    
 

22

32

1

3 2

z
f z

z z




 

and the simple closed contour : 3c z  .

The function  has double zero at z = i, -i, poles of order three

at z= -1, -2.

Hence N = 2+1 =4, P = 3+3 = 6

Poles and zeros of f(z) are inside C, hence by  the above theorem

 
 

'1
4 6 2

2 c

f z dz

i f z
    ,

Check your progress

(j) Find 
 
 
'

c

f z
dz

f z  where :| | 2C z  .

and   2

1

2 1

z
f z

z z




 

The next theorem is called the Argument Principle.

Theorem 2 : Let  C  be a simple closed contour. A function f is

analytic and non-zero on C. meromorphic within C. If N is the
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number of zeros and P is the  number of pole (counting

multiplicaties) of f(z) within C, then

   arg 2c f z N P  

Proof : Let z=z(t)  a t b   be the parametric representation
of C. Then.

 
 

    
  

' '' b

c a

f z t z t dtf z dz

f z f z t
 

Let   be the image of C.

Since   0f z   for any z on C , any point on   can be
represented as

      i tf z t r t e   bta 

Then we have

           ' ' i td d
f z t z t f z t r t e

dz dz
      

         ' . 'i t i tr t e ir t e t   

Hence

 
 

 
   ' '

'
b b

c a a

f z dz r t dt
i t dt

f z r t
   

        log
b b

a a
r t i t       

As r(b)=r(a) and      argcb a f z   

we have

 
   '

argc

c

f z dz
i f z

f z
 
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Again from the previous theorem we have

 
 

'1

2 c

f z dz
N P

i f z
 

Consequently we have

   arg 2c f z N P  

Example : Consider the function   2
1f z
z

 , and the circle

:C z r , 0r  . f(z) has a pole of order two at z=0.

It is analytic and non - zero on C.

Hence by the argument principle

    //arg 2 0 2 4c f z      

Check your progress :

(k) Find  zc farg , where  
 21zz

z
z




sin
f

and  :| | 2C z 

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.5.2  Rouche's Theorem__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

We will  use argument principle to prove a result, which

compare the number of zeros of two analytic functions inside

a simple closed contour.

Theorem1 (Rouche's theorem): Let C be a simple closed

contour. Suppose f and g are two functions analytic within

and on C, such that    f z g z  for all z on C. Then f(z)

and    f z g z  have the same number of zeros, counting

multiplicities inside C. [i.e same zero may occur move than

once and they are counted according to the number of times

they occur].
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Proof : Since     0f z g z 

and         0f z g z f z g z    , z  on C.

neither f(z) nor    f z g z  has a zero on C. Let fZ  and f gZ 

denote the number of zeros (counting  multiplicities), of f(z)

and    f z g z  respectively inside C.

Then by Argument Principle

 arg 2c ff z Z   and    arg 2c f gf z g z Z     
Now,

       
 

arg 1c c

g z
f z g z f z

f z

            
   

   
 

arg arg 1c c

g z
f z

f z

 
     

 

 2 2 argf g f cZ Z F z   

where    
 

1
g z

F z
f z

 

But    
 

1 1
g z

F z
f z

  

That means under the transformation F, the image of C lies

within the open disk 1 1w  . That is the image curve does

not enclose the origin w= 0. Hence  arg 0c F z  .

Consequently

2 2f g fZ Z  

ff ZZ g  

Example :  Locate the number of zeros of the polynomial
7 34 1z z z  
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Let   34f z z  and   7 1g z z z  

and let C be the circle 1z  .

Then    4f z   and   7 1 3g z z z    on C. Conditions of

Rouche's theorem are valid. So, we have f(z) and f(z) +g(z) have

same number of zeros inside C. But f(z) has three zeros inside

C. So,   f(z)+g(z) i.e. the polynomial 7 34 1z z z    has three

zeros inside C.

Check your progress

(l) Find the number of zeros of the polynomial

z2zz5z 346   inside the circle 1z  .

Next we will prove the fiundamental theorem of algebra using

Rouche's theorem.

Let

  2
0 1 2 ........ n

nP z a a z a z a z     , 0na 

Let   n
nf z a z  and   2 1

0 1 2 1........ n
ng z a a z a z a z 
    

We have

 
 

1
0 1 1....... n

n

n

n

a a z a zg z

f z a z


  



2 1

0 1 2 1.........
n

n
n

n

a a z a z a z

a z


   



Then for all :z z R 

 
 

2 1
0 1 2 1.......... n

n
n

n

a R a R a R ag z

f z a R


   



0 1 2 1.......... n

n

a a a a

a R
   


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By taking R sufficient large we can have

 
 

1
g z

f z
  is     g z f z :z z R 

Let C be the circle z R .

Then conditions of Rouche's theorem are valid for f(z), g(z) and

C. Hence f(z) and f(z)+g(z) have same number of zeros inside

C. As   n
nf z a z  has n zeros inside C, so f(z)+g(z) i.e. P(z) has

n zeros inside C.

Example : Show that three roots of 4 6 1 0z z    lies in the

annulus 3 22 z 

Solution : Let   4f z z  and g(z)= 6z+1

and let : 2C z 

Then on C,   32f z   and   6 1 13g z z  

i.e.    f z g z  on c.

As f(z) has 4 zeros inside, f(z)+g(z) has 4 zeros inside C.

Next let f(z)=6z and   4 1g z z   and let 1
3:| | 2c z 

then on 1c , f(z) = 9 and   4| | | 3 | 1 7g z   

so,    f z g z  for z on 1c .

As f(z) has single zero inside 1c ,

f(z)+g(z) has single zero inside 1c

Thus the number of roots of 4 6 1 0z z    in the annulus 3 22 z 

is (4-1) is 3.

Check your progress :
(m) Determine the number of roots of

01zz6z2 25 

in the  annulus 1 2z  .
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.5.3 Evaluation of Real Integrals__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Here we will develop technique to evaluate two types of real

integrals :

(a) Improper integral  and

(b) D ef in i te in tegral  inv olv ing sines and cosines

(a) Improper integral

In real calculus, the improper integral of a continuous function

f(x) on   0,  is defined by

   
0 0

R

R
f x dx Lt f x dx




   ................ (i)

provided the limit exists. Then the improper integral is said

to converge. If f(z) is continuous on  ,   . we define

     
1 2

1 2

0 0

R R
R R

f x dx Lt f x dx Lt f x dx




 


    ............... (ii)

whenever both integrals on the R.H.S exists. We have another

value, called Cauchy principle value, defined by

   
R

R
R

PV f x dx Lt f x dx



 

  ............... (iii)

provided the limit exists.

If integral (ii) converges its Cauchy principle value (iii) exists,

and that value is that to which integral (ii) converges. This is

because

     
0

0

R R

R R

f x dx f x dx f x dx
 

   

and the limit as R  of each of the integrals on the right

exists when integral (ii) converges. The converse, however is

not true as is evident from the following example.
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Example 1 : Consider the function f(x) = x.

then

 
2

PV 0
2

RR

R R
R R

x
f x dx Lt xdx Lt



 
  

 
   

 
 

Now,

 
2

1 2
1

0

0

R

R R
R

f x dx Lt xdx Lt xdx


 
 

   

      
2

1 2
1

02 2

0
2 2

R

R R
R

x x
Lt Lt
 



   
    

   

     
1 2

2 2
1 2

2 2R R

R R
Lt Lt
 

 

These two limits do not exist.

Hence the improper integral  f x dx



  does not exists.

It is interesting to note that for even functions, (i.e. for

functions satisfying     f x f x  , the converse is also true.

Also in that case, the integrals (ii) and (iii) converge or diverge

together and

   
0

1

2
f x dx f x dx

 



 

We will consder rational functions only

Let    
 

p z
f z

q z


We assume q(z) has no real zero and  at least one zero above
the real axis.
We consider a circle |z|=R such that all zeros of q(z) above

the real axis are contained inside the closed path formed by

the line segment R x R    and the upper semi circle. If the
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upper semi-circle is denoted by RC . then by  Cauchy residue

theorem, we have

    2
R

R

R c

f x dx f x dx i


   [sum of the residues of

singularities inside the contour]
or,

  2
R

R

f x dx i


 [ sum of the Residues]  
Rc

f x dx 

If   0
R

R
C

Lt f x dx


 , then

  2PV f x dx i




 [Sum of Residues]

Since  f(z) is assume to be even,

    2f x dx PV f x dx i
 

 

    [sum of the residues]

 
0

2 2f x dx i


  [sum of the residues]

 
0

f x dx i


  [sum of the residues]

While evaluating improper integral by this method, the

important fact is toverify that

  0
R

R
c

Lt f x dx




Example 2: Evaluate 
2

6
0 1

x dx

x





consider the function  
2

6 1

z
f z

z




The singularities of f(z) are the zeros of 6 1z  .
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these are given by

 2 1 6i k

kz e


 , (k = 0, 1, 2, ..........., 5)

the singularities lying above real axis are

6
i

0 ec


 , iec 6
3i

1 
 , 6

5i

2 ec




Let RC  denote the upper half of the circle |z|=R (R>1).

then the singularities 0c , 1c , 2c  lie within the simple closed

contour formed by the line segment RxR   and RC .

We have

    2
R

R

R c

f x dx f z dz i


   [sum of residues at 0c , 1c and 2c ]

Using methods to find residue, we obtain the residues as i6
1 ,

i6
1  and i6

1  respectively.

Hence

     1 1 12 6 6 6
R

R

R c

f x dx i f z dzi i i


    

       3
Rc

f z dz  

       3
R

R

R R
R c

f x dx PV f x dx Lt f x dx Lt f z dz
 

 
  

       

Finally we need to show   0
R

R
c

Lt f z dz




we have for any z on RC

 
2 2 2

6 66 11 1
R

z z R
f z M

Rz z
   

 
 (say)
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then   ,
R

R

c

f z dz M R R being  length of RC .

But 
2 3

6 6
0

1 1R

R R
M R R

R R

   
 

 as R

Hence   0
R

R
c

Lt f z dz




Consequently   6f x dx 






 
0

3f x dx 


 

Example 3 : Evaluate 
2

4
0 1

x
dx

x





consider the function   
2

4 1

z
f z

z




the singularities  of f(z) are the zeros of 4 1z 

then are given by  2 1 4i k

kz e
 , (k = 0, 1, 2, 3)

i.e. 4i
e
 , 3

4
i
e

 , 5
4

i
e

  and 7
4

i
e



The singularities lying above the x-axis are 4
1

i
z e


  and

3
4

2

i
z e




The residues at 1z and 2z are 
1

4 2

i
 and 

1

4 2

i


Hence

    1 1
2

4 2 4 2
R

R

R c

i i
f x dx f z dz i



     
  

   
2

R

R

R c

f x dx f z dz




   
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Hence

     
R

R
R

f x dx PV f x dx Lt f x dx
 


  

   

      
2

R

R
c

Lt f z dz



   .

Here RC  denote the upper half of the circle of the circle

 1z R 

Finally show   0
R

R
c

Lt f z dz




we have for any z on |z|=R,

 
2 2 2

4 44 11 1

z z R
f z M

Rz z
   

 
R (say)

then  
R

R

c

f z dz M R , R  being the length of RC

But  
2 3

4 4
0

1 1R

R R
M R R

R R
    

 
 as R

Consequently

 
2

f x dx






 
0 2 2
f x dx



 

Check your progress
(n) Evaluate

(i) 2
0 1

dx

x




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(b) Definite integral involving sines and cosines

The method of residues is also useful in evaluating certain

definite integrals of the type.

 
2

0

sin ,cosf d


   ,  sin ,cosf d




  

    ...........(i)

Here   is the  argument of a point  z  on the unit circle centred
at the origin.

In these type of problems, we substitute
iz e   ( 0 2    or      )

which  gives idz ie d izd   

Again the relations

sin
2

i ie e

i

 




 ,  cos
2

i ie e 






i.e.
1

sin
2

z z

i



 ,

1

cos
2

z z




reduces the given integrals to the form
1 1

,
2 2c

z z z z dz
f

i iz

   
 
 

  ................... (ii)

where : 1c z  with positive direction. If the integrand of

integral (ii) is a rational function of z, we can evaluate that

integral by means of Cauchy's residue theorem  once the zeros

of the denominator polynomial are known and provided they

do not lie on C.

Example 1: Evaluate
2

0 1 cos

d

a

 
 ,  1 1a  

Let iz e   0 2   , then dz izd

Let C denote the circle |z|=1 with positive direction.
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Then the given integral  reduces to

1

1
2

c

dz

z z
iz a

i

 
 

 



2

2

2
1c

a dz
i

z z
a


 



The zeros of the denominator of the integral are

2

1

1 1 a
z i

a

   
   
 

, 
2

2

1 1 a
z i

a

   
   
 

As |a|<1,

2

2

1 1
1

a
z

a

 
 

Also, since 1 2 1z z  , we have 1 1z  .
Hence neither singularities lie on C, and the only singularity

interior to it is the point 1z . The residue at 1z  is 2

1

1i a
.

Consequently

2 22

2 1 2
2

2 1 11c

a dz i
i i a i az z
a

 
  



Example 2 : Evaluate

 2
0 cos

d

a

 
 , 2 1a 

The integrand is symatric in  , so we write

   

2

2 2
0 0

1

2cos cos

d d

a a

  
 


   , 2 1a 

Put iz e  and cos
2

i ie e 





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then dz izd and  1 1cos
2

z z  

Let C denote the unit circle |z|=1 with positive direction. then

the given integral reduces to

   
2

2 22
0

4

cos 2 1c

d zdz

ia z az

 



  

 

the singularities of the integrand are poles of order two at

2
1 1z a a     and 2

2 1z a a   

As 2 1a  ,

2
2 1 1z a a   

Also, since 1 2 1z z  , we have 1 1z 

Hence  neither singularities lie on C, and the only singularity

interior to it is 1z . The residue at 1z  is  
3

2 24 1

a

a 

Consequently

   
2 32 2 2

4 4
x2

2 1 4 1c

zdz a
i

i iz az a


  


   

2

2 3
2 2

0

2
cos 1

d a

a a

  


 
 



   
2 3

2 20 cos 1

d i a

a a

  


 
 



Check your progress :

(o) Evaluate

(i) 



2

0 45

d

sin , (ii) 


 


21

d

sin
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.7 1. Let us sum up :
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In this blockt you are acquainted  with two important concepts :
Taylor expansion and Laurent expansion of a function,
Whenever a function is analytic at a point then there is always
a certain neighbourhood of that point where the function has
a power series expansion. If f has an isolated  singularity at
some point then in some deleted neighbourhood of that point,
the function has a series representation. One important
conclusion that we have come across is that zeros of analytic
function are isolated. The concept of Laurent series helps to
classify different kinds of isolated singularities of a function.
Beside this theorem, we have developed some other methods
to evaluate tesidues at singularities. If a function is analytic
within and on a smple closed contour C with known number
(finit) of poles inside C, then Arguments principle determines
the number of zeroes of f inside C. Rouche's theorem on the other
hand, compares the number of zeroes of two functions related
by a certain condition. the most important application of Cauchy
residue theorem is the evaluation of some real integrals.
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2. Keywords :___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Zeros of analytic function, Singularities, poles, Taylor
Series, Laurent Series, Residues, Arguments Principle,
Rouche's Theorem.
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
3. References  :___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

1. R.V. Chufrchill & J.W. Brown, Complex Variables and
Applications, Mc. Grow Hill

2. Murray R. Spiegel, Theory & Problems of Complex
Variable (Schaum's Outline Series) SI. (Metric) Edition,
1981,  Mc. Grow Hill

3. H.S. Kasana, Complex Variable, Theory and
Application Prentice Hall of India.
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4. Possible Answers to the CYP :___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

(a) Proceed as in Example 1 (b) of 5.2

(b) Proceed as in Example 2 of 5.2

(c) 3 3sin 0 0z z z    or sin 0 0z z   or z n , n N

Let  3z f z  and  sin z g z

then z=0 is a zero of order 3 for

          / // ///0 0 0 0, but 0 0f z f f f f   

and z=0 is a simple zero for       /0 but 0 0g z g g 

So, z=0 is a zero of order (3+1) i.e. 4 for 3 sinz z

Again for  0 , 0n N g n    but  / 0g n 

So, ( 0)z n n   is a zero of order one for g(z) and hence

for f(z)g(z) is 3 sinz z .

(d) (i)   21 0f z z z i     

   / //2 , 2f z z f z 

   /0, 0,f i f i z i     is a simple zero for

1+z2 Similarly z=-i is a simple zero for 1+z2

(ii) Proceed as in d(i).

(e) (i)
3 5 7

4 4

sin 1
....

3! 5! 7!

z z z z z
z

z z

  
     

  

  
2 31

...., 0 | |
3! 5! 7!

z z
z

z
    

(ii) Proceed as in (e) (i).

(f) (i) Let   2

1

1
f z

z



. Find the laurent Expansion of

 2

1
f z

z
about z=0 than use theorem 2 of section 5.4.1

(ii) Proceed as in f(ii)
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(g) (i)     11 1
1

1
z

z z z
 



    2 31
1 ..... , 0 | | 1z z z z

z
      

   21
1 ......., 0 | | 1z z z

z
      

This is the Laurent Series of  
1

1z z   about z=0 .

Residue at z=0 is coefficient of 1
z  i.e. 1

Again,  
      

1 1

1 1 1 1z z z z
 

   

         11
1 1

1
z

z


   



         21
1 1 1 ... ,

1
z z

z
      



   0 | 1| 1z  

    1
1 1 ..., 0 | 1| 1

1
z z

z
        



This is the Laurent series of  
1

1z z   about z=-1.

Residue at z=-1 is coefficient of  
1

1z   i.e. 1

for (g) (ii) and (iii) Use the series of 1cos z  and sin z .

(h) (i), (ii) and (iii) Proceed as in examples 1 & 2 given after

Method 2.

(i) (i), (ii) and (iii) Proceed as in examples 1 & 2 given after

Method 3.
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(j) Find the number of zeros and poles of f(z) inside |z|=3,

then apply theorem 1 of section 5.5.1.

(k) Find the number of zeros and poles of f(z) inside |z|=3,

then apply theorem 2 of section 5.5.1.

(l) Take   45f z z  and   6 3 2g z z z z    . Then use

Rouche's theorem.

(m) First take   26f z z   and   52 1g z z z   . Then Using

rouche's theorem show that the given equation has two

roots inside  |z|<1.

Next take   52f z z  and   26 1g z z z     and using

Rouches theorem show that the given polynomial has

five roots inside |z|<2.

(n) Let   2

1

1
f z

z



. Then &z i i   are the singularities of

f(z). The singularity above x-axis is i.

Find Radue of f(z) at z=i. It is 
1

2i
. Then proceed as in

examples 2 and 3 of section 5.5.3 (a)

(o) Put iz e   and sin
2

i ie e

i

 




 , and then proceed as in

example 1 and 2 section 5.5.3 (b)

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5. Model Questions :
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

1. Find the Maclaurin series expansion of

(a) 2zsin , (b) 2coshz iz , (c) 
zee

2. Obtain Taylor series of
(a) z2hcos about  iz
(b) zsin  about 2z 
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3. Derive the expansion

 
2 1

2
0

sinh 1

2 3 !

n

n

z z

z z n





 
 , 0 z 

4. Show that when 0 4z  ,

2 2
0

1 1

4 4 4

n

n
n

z

z z z






 
 

5. Locate the zeros of the function and determine their
order

(a)   421 z , (b)  8 4z z

6. I f  f has zero of order k at a, show that f' has a zero of

order (k-1) at a.

7. Obtain the Laurent series expansion of

    1 3

z
f z

z z


 

8. Find the Laurent series that represents the function

   2
2

1sinf z z
z



in the domain 0 z 

9. Find a representation for the function

  1 1 1
11 1

f z
z z

z

  
 

in negative powers of z that is valid when

1 z  .

10. Find different series expansions in certain domains and

specify those domains for the function

   2

1

1
f z

z z




11. In each case, write the principal part of the function

at its isolated singular point and classify the singularity
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(a) 
1
zze , (b) 

2

1

z

z
, (c) 

sin z

z
,

(d) 
cos z

z
, (e)  3

1

2 z

12. Show that the singular point of each of the following

functions is a pole. Determine the order of the pole and the

corresponding residues.

(a) 3

1 cosh z

z


, (b) 

2

4

1 ze

z


,

(c)  

2

2
1

ze

z 

13. Suppose that a function f is analytic at 0z , and

write    
0

f z
g z

z z




show that –

(a) If   0z0 f , then 0z  is a simple pole of g, with

residue  0zf .

(b) If   0z0 f , then 0z  is a removable singular point

of g.

14. Evaluate thef integrals using residue  theorem :

(a)    
2

2

3 2

1 9c

z
dz

z z


   when : 2 2c z  

(b)  3 4c

dz

z z   when : 2c z 

(c)  2

cosh

1C

zdz

z z


  when : 2c z 
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15. Evaluate using single residue method

(a) 
 

   

223 2

1 2 5c

z
dz

z z z



  , (b) 

13

31

z

c

z e dz

z

where : 3c z  .

16. Let c denote the unit circle |z|=1. Find  zc farg
where

(a)   2f z z ,   (b)  
3 2z

f z
z


 , (c) 

 7

3

2 1z

z



17. Determine the number of zeros, counting multiplicities

of the polynomial

(a) 6 4 35 2z z z z    inside the circle |z|=1
(b) 4 3 22 9 1z z z z     inside the circle |z|=2

18. Show that if c is a complex number such that |c|>e, then

the equation zn ecz  has n roots, counting multiplications,

inside the circle|z|=1.

19. Let   2 24 3 9P z z iz iz    ,

Use  Rouchi's theorem to show that there are

(a) no zero in |z|<1, (b) three zero in |z|<2.

20. Use residues to evaluate the  improper integrals

(a)  22
0 1

dx

x




 , (b)    

2

2 2
0 1 4

x dx

x x



 

(c) 
 

  

2

22 2

1

1 4

x x dx

x x





 

 


21. Use residues to evaluate the definite integrals :

(a) 
2 2

0

cos 3

5 4cos 2

d  
 , (b)  221 sin

d





 
  , (c) 

2 1 sin

3 cos
d





 




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________________________________________________________________________________________________________________________________________________________________________________________________________________________
UNIT-3 : CONFORMAL MAPPING [12 Marks]
________________________________________________________________________________________________________________________________________________________________________________________________________________________

STRUCTURE :

6.0 Objectives

6.1 Introduction

6.2 Some elementry Transformations

6.3 Bilinear Transformations

6.3.1 Definition and Examples

6.3.2 Properties of Bilinear Transformation

6.3.3 Some theorems related to Bilinear Transformation

6.3.4 Mapping of the upper half plane

6.4 Conformal mapping

6.5 1. Let us Sum up

2. Key words

3. References

4. Possible Answers to the CYP

5. Model Questions.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.0 Objectives__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

v After going through this unit you will be able to

v Define and give examples of Bilinear transformation.

v Examine whether a given transformation is a Bilinear

v Prove Properties of Bilinear Transformation

v Find fixed point(s) of a transformation

v Find Image under a given bilinear transformation

v Construct bilinear transformation carrying

specified points to specified points.
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v Obtain the mapping of the upper half plane

v Define and give examples of isolgonal and

conformal mapping

v Prove necessary condition for a function to be

conformal

v Identify points where a function is conformal

v Find scalar factor and angle of rotation of a given

function.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.1 Introduction__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In this unit we will discuss different types of transformatiom.

Some elementry transformations are translation, rotation,

stretching (contraction), and Inversion. A composition of a

stretching (Contraction) and a translation is called a linear

transformation. You will be introduced to the new concept of

Bilinear transformation.

A bilinear transformation is a combination of translation,

rotation, stretching (contraction), and inversion. Some

important properties of bilinear transformation will be

discussed. We will obtain the bilinear transformation that maps

the upper half-plane onto the open unit disk. The Bilinear

transformations fall into a broader class of transformations

called conformal mapping or angle preserving mapping. We

will obtain sufficient condition for a function to be conformal

and discuss  some of its properties. Two important quantities

associated with a function are the scalar factor and angle of
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rotation. You will learn how to calculate these quantities.

Finally we will show that a function, which is conformal at a

point, has a local inverse at that point.

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.2 Some elimentary transformation
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Translation : A transformation of the form w=z+a, where a is

some constant complex number, is called a translation

we write, w =u + iv and z = x + iy

Suppose 1 2a a ia 

then 1 2( ) ( )w z a u iv x iy a ia       

1u x a   , 2v y a 

Thus the image of any point (x, y) in the z-plane is the point

1 2( , ) ( , )u v x a y a    in the w-plane. Hence any point under this

transformation is translated though a distance |a| in the

direction  of the vector 
__

1 2( , )a a a  since this is simply a

translation image of any region is geometrically congruent to

the original one.

Check your progress :

 (a) Locate geometrically the image of the region :
1z ||  under the transformation i2zw 

Rotation : A transformation of the form iw e z , where   is

some real number, is called a rotation

Write iw e z , iz re  , then

Rei i i iw e z e re     
( )Rei ire   

,R r      
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Hence any point under this transformation is rotated through
an angle. Since this is simply rotation, image of any region is
geometrically congruent to the original one.

Check your Progress :

  (b)  Repeat CYP (a)  under the transformation 4
i

w e z




Contraction or Strecthing : A transformation of the  form

w = az, where a is some complex constant, is called contraction

(if | | 1a  ) or stretching  (if | | 1a  )

Write Reiw  , iz re  ,

suppose ia e  , where   and   an real constants.

Then  Re ii iw az e e        

,R fr     

Thus under this transformation, the radius vector of any point
is stretched (if 1  ) or contracted (if 1  ) by the factor  .
Also it is rotated through an angle of .  Since stretching or
contraction is involved, the image of any region will not be
geometrically congruent to the original one. How ever the
geometric shape of the image will be similar to the original one.

Check your progress :

(c) Locate geometrically the image of the region

2z  ||  under the transfofrmation

w = (1+i)z

Linear Transformation : A transformation of the form

w az b   where a and b are complex constants, is called a
linear transformation.

It is the composition of the taransformation.

z az  and z z b 

Note : Contraction/Streching is a particular case of linear
transformation.



98

Exercise : Find the image of the region 0 1x  , 0 2y   under

the transformation (1 ) 2w i z  

Solution: This is a linear transformation. It is the composition

of the transformation .

(1 )w i z   and 2W Z 

We have   41 2 ii e  

So, under the transformation w=(1+i)z the given region will

be expanded by the  factor 2  and rotated through on angle

4
 . The image is shown as below.

x

y 

2

1 x 

y

Then under the transformation w=z+2. The image region is

further translated through a distance of 2 unit horizontally.

So final image  of the given region is

Check your progress :

(d) Find the region { : 2 ,0 }iz z e      , under the
transformation w=iz+1.

4


x
2

 4

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Inversion : A transformation of the form 1w z  is called an

inversion.

Write Reiw   and iz re 

then
1 11 Rei i
i

w ez re r
 


   

1R r   and   

Hence under this transformation the radius vector of any point

is changed to its reciprocal and the point is rotated through

an angle   . The map establishes a one-one corresponding

between the non-zero point of the z and w-planes. Since
1

| | | || | 1
| |

w w z
z

   , the interior of the circle | z | = 1 is mapped

onto the exterior of the circle |w|= 1, |z |= 1 is  mapped on

|w|= 1, and the enterior of the circle |z |=1 is  mapped onto

interior of the circle |w|= 1.
The transformation can be extended to the extended complex

plane  C  as

0,

, 0

1 ,otherwise

z

w z

z

   



With this definition Tz=w is a continuous function in the

extended complex plane.

writing w u iv   and z x iy   in the equation  1w z

we get 2 2

x
u

x y



, 2 2

y
v

x y
 


   ......... (i)

and 2 2

u
x

u v



, 2 2

v
y

u v
 


  .......... (ii)

Equation (i) and (ii) will be used to find images of different

region under the transformation  1w z .
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Result : The map  1w z  transforms circles and lines into circles

and lines.

Proof : Let  a, b, c, d be real numbers such that 2 2 4b c ad  .

Then the equation

 2 2 0a x y bx cy d        ..........(iii)

represents a circle if 0a   and a line if a=0. Using (ii), (iii)

reduces to

 2 2 0d u v bu cv a       ............ (iv)

It is a circle (in the w-plane if 0d   and a straight line of d=0.

From (iii) and (iv) it is obvious that –

1. A circle not passing through the origin  0, 0a d   in

the  z-plane is mapped onto  a circle in the w-plane not passing

through the origin.

2. A circle passing through the origin  0, 0a d    in the

z-plane is mapped onto a line in the w-plane not passing

through the origin.

3. A line not passing through the origin  0, 0a d   in

the z-plane is mapped onto a circle in the w-plane  passing

through the origin.

4. A line passing through the origin  0, 0a d   in the z-

plane is mapped onto a line in the  w-plane passing through

the origin.

Example 1 : When a circle is transformed into a circle under

the map 1w z , the centre of the original circle is never

mapped  onto the centre of the image circle.
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Solution : From (iii) and (iv) of the above result we have centre

of the   original circle is ,
2 2

b c

a a
   
 

 and the  centre of the

image circle is ,
2 2

b c

d d
  
 

. Again, the image of ,
2 2

b c

a a
   
 

,

the centre of the original circle under 1w z  is given by

 2 2 2
2

4

b
au

b c a




 ,  2 2 2
2

4

c
av

b c a


 , using  (i)

i.e. 2 2

2ab
u

b c





, 2 2

2ac
v

b c




If we assume that the centre of the circle is mapped onto the

centre of the image circle, then

2 2
2 2

2
42

ab b b c adab c

    


and 2 2
2 2

2
4

2

ac c
b c ad

b c d
   



But of 2 2 4b c ad  , (iii) will not represent a circle. Hence  the
centre of the original circle is not mapped to the centre of the

image circle.

Example 2 : Find the image of the infinite strip 
1

0
2

y
c

 

under the map 1w z .

Solution : From (ii) we have under the transformation

1w z , 2 2

u
x

u v



, 2 2

v
y

u v






So, 2 2
0 0

v
y v

u v


   


0 0 0r v v      

and 2 2

1 1

2 2

v
y

c u v c
   


2 2 2 0u v cv   

 22 2u v c c   
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 22 2u v c c    is the circle with centre at (o,-c) and radius c.

 22 2u v c c    denote the exterior of that circle.

Hence the image of the infinite strip 
1

0
2

y
c

   is the region

shown  shaded in the  following figure.

Check your progress

(e) Find the image of the half plane 1x c  1 0c 

under the transformation 1w z .

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.3  Bilinear Transformation
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.3.1 Difinition and Example
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

A transformation of the form

az b
W Tz

cz d


 


 ,   ................... (i)

where a, b, c, d are complex constant satisfying 0ad bc  , is

called a bilinear transformation, or Linear fractional

transformation or Mobius transformation.

Transformation (i) can also be written as

0cwz dw az b   
i.e. 0, 0Azw Bz Cw D AD BC     

(o,-c)
O

y

0   x

1
2y C
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Since it is linear in z and w, it is called bilinear Bilinear

transformation is the combination of linear and inverse

transformation.

If ad- bc =o in (i), then

 
 

ba zaz b aw
dcz d c z c


 

 

     

bz aa
c dz c




 ,
0ad bc

b d
a c

 

 



     a
c

which is a constant transformation But a constant function is

not linear. Hence we have the condition 0ad bc  . You will

observe that the behaviour of the transformation will not

change if all the constants a, b, c, d are multiplied by a non-

zero constant. Hence, without loss of  generality we can take

ad - bc = 1.

Remark : Transformation, Rotation, contraction (or stretching),

inversion are all particular cases of bilinear transformation.

The bilinear transformation (i) is not  defined for dz c 

 0c   in the complex plane. We can however extend the

transformation to the extended complex plane by definng it as

' :T C C 

/

,             0

,           0

,        0

,    

z

z c

a z ccw T
dz cc

Tz otherwise

  


   
   


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You can verify that with this definition T'(z) is  continuous on

the extended complex plane C , Hence T'Z is one-one onto

mapping from C  to C . For simplicity we will write T for T'.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.3.2  Properties of bilinear tansformation__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

(a) The inverse of a bilinear transformation is

bilinear

(b) The composite of two bilinear transformation is

bilinear

(c) Every bilinear transformation maps circles and

limes into circles and lines.

Proof: (a) Since T is one-one onto 1T  exists and given by

1
zw T z T w  

we have z

az b
w T

cz d


 


, 0ad bc 

Simplifying we get

dw b
z

cw a

 



, 0ad bc 

1 dw b
T w

cw a
  

 


, 0ad bc 

which is again bilinear

Further  1 ,T    if 0c 

d

c
   if 0c 

 1 aT c
  , 0c 

(b) Let us consider  two bilinear transformation

z

az b
T

cz b





,    0ad bc 
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and z

pz q
S

rz s





,    0ps qr 

Then

   zz

az b
ST S T S

cz d

     

az b
p q
cz d
az b

r s
cz d

 






   
   
pa qc z bp dq

ar cs z br ds

  


  

Az B

Cz D





(say)

You  can easily show that 0AD BC   Hence ST is a bilinear

transformation Similarly TS is a bilinear transformation.

(c) Let Tz be a bilinear transformation given by

z

az b
T

cz d





,    0ad bc 

If c = 0, then

,z

a bT z Az Bdd
      ,

a bA B dd
 

which is a linear transformation we have already seen that a

linear transformation maps lines and circles into lines and

circles.

If 0c  , then we can write

1
.z

a bc ad
T

c c cz d


 



Let 1 2 3 2
1

1 1
, ( ), .

bc ad
cz d z z say z z

z cz d c


    



then 3z

a
T z

c
 

i.e., Tz is the composition of the following transformation



106

Z cz d  , 
1

W
z

  , 
bc adaw Wc c


 

i.e Tz is the composition of a linear transformation, then an
inversion, followed by another linear transformation. But each
of the component transformation maps circles and lines into cicles
and lines. Hence Tz maps circle and lines into circles and lines.

Example: The line 3y=x is mapped onto a circle under the

bilinear transformation

2

4

iz
w

z i






Solution : Put w=u+iv and z=x+iy. Then

2

4

iz
w

z i





 gives

 22

9

16 4 1

u
x

u v


  ,   

2 2

22

4 4 7 2

16 4 1

u v u
y

u v

  


 

Putting these values of x and y in 3y=x, we get

2 2 3 7 1 04 4 2u v u v    

i.e.    2 2 453 7
8 8 32

u v   

It is a circle with  centre at  3 7,8 8   and radius equal to

3 3
24

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.3.3  Some theorems related to Bilinear Transformation :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Definition :  A bilinear transformation Tz is said to have a fixed

point (or invariant point) at 0z  if 0 0Tz z

Theorem  1: Every bilinear transformation (except the identity

map) has at most two fixed point
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Proof : We have

Tz z
az b

z
cz d


 


2 ( ) 0cz a d z b    

This being a quaratic equation, will give at most two values
of  z. Hence Tz has atmost two fixed points. However for the
identity map Iz=z, every point is a fixed point.

Theorem 2 : If a  bilinear transformation w=Tz has exactly two

fixed points, say 1z and 2z , then for same non-zero constant k,

1 1

2 2

w z z z
k

w z z z

 


 

If Tz has only one fixed point, say 1z  then for some non-zero

constant  'k ,

1 1

1 1
'k

w z z z
 

 

Proof :  Let Tz has exactly two fixed point 1z and 2z

then

1 1Tz z  and 2 2Tz z

1
1

1

az b
z

cz d


 

  and 
2

2
2

az b
z

cz d






 2
1 1 0cz a d z b      and  2

2 2 0cz a d z b   

2
1 1 1cz az b dz     and 2

2 2 2cz az b dz     ............. (1)

Then

 1
1 1

az b z cz daz b
w z z

cz d cz d

  
   

 

 
 1 1a z c z b dz

cz d

  



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   2
1 1 1a cz z cz az

cz d

  



 Using first part of (1)

   1 1a cz z z

cz d

 



Similarly

  2 2
2

a cz z z
w z

cz d

 
 


Hence

  
  

1 11

2 2 2

a cz z zw z

w z a cz z z

 


  

 
 

1

2

z z
k

z z




 ,  
 
 

1

2

0
a cz

k
a cz


 

 ,  1 2z z

If Tz has only one fixed point, then say 1z , then the equation

Tz=z has exactly one solution.

i.e.  2 0cz a d z b     has only one root.

It is given by 1 2

a d
z

c




This gives 1 1a cz d cz    ........ (ii)

Hence as before, we have

   1 1
1

a cz z z
w z

cz d

 
 



  1 1 1

1 cz d

w z a cz z z


 

  

     
1 1

1 1

cz d cz cz

a cz z z

  


 

   
  

1 1

1 1

c z z d cz

a cz z z

  


 
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   
  

1 1

1 1

c z z a cz

a cz z z

  


  Using (ii)

   1 1

1c

a cz z z
 

 

 1

1
'k

z z
 



Where  1

2
' 0

c c
k

a cz a d
  

 
, putting 1 2

a d
z

c




Example :  Find the bilinear transformation which have -1 and

1 as fixed points.

Solution : We have from the  previous theorem  that if

az b
Tz

cz d





 has exactly two fixed points, say 1z  and 2z  then

1 1

2 2

w z z z
k

w z z z

 


   where  
1

2

a cz
k

a cz






Here 1 1z  , 2 1z   ,  
a c

k
a c


 


Hence we have

1 1
.

1 1

w a c z

w a c z

  


  

which on simplification reduces to

az c
w

cz a





,  2 2 0a c 

Alternative method

Let 
az b

Tz
cz d





 has two fixed point 1 and -1 then T (1) = 1 and

T (-1) = -1
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which gives

1
a b

c d





 and 1

a b

c d

 
 

 

On simplifying and solving we get

a = d and b = c

Hence required transformation is

az c
Tz

cz a





,  2 2 0a c 

Check your progress

(f) Find all bilinear transformation that have i and

-i as fixed points

Theorem 3 : There exists a unique bilinear transformation

which maps three given distinct points 21 zz , and 3z in the

extended z-plane onto three specified distinct points 1 2,w w

and 3w  in the extended w- plane respectively

Proof : Consider the expression

   
   

  
  

1 2 3 1 2 3

1 2 3 1 2 3

w w w w z z z z

w w w w z z z z

   


     ......................... (i)

It can be written in the form

          1 2 3 1 2 3 1 2 3 1 2 3w w w w z z z z w w w w z z z z        

Put 1z z  then you get 1w w

Put 2z z  then you get 2w w

Put 3z z  then you get

       1 2 3 3 1 2w w w w w w w w    



111

which has unique solution 3w w .  Thus you see that
expression (i) gives a transformation which maps 1 2,z z and 3z

in the z-plane onto 1 2,w w and 3w in the  w-plane respectively.

Further you can check that equation (i) can be expressed in

the  form

Az B
w

Cz D






where A, B, C, D are constants involving 1 2 3, ,z z z , 1 2 3, ,w w w  such

that  0AD BC 

Hence (i) gives a bilinear transformation

Next we show that such a bilinear transformation is unique.

If possible, let T and S be two bilinear transformations which

maps 1 2,z z  and 3z , onto 1 2,w w  and 3w  respectively. Then

1 1Tz w , 2 2Tz w , 3 3Tz w

and 1 1Sz w , 2 2Sz w , 3 3Sz w

As S s bilinear 1S  is bilinear and hence 1S T is bilinear (being

the composition of two bilinear maps)

We have

   1 1 1
1 1 1 1S T z S Tz S w z    

Similarly  1
2 2S T z z   and  1

3 3S T z z 

which shows that 1S T has three  fixed points But a bilinear

tansformation can have move that two fixed points only if it

is the identity map Hence
1S T = I

S = T
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______________________________________________________________________________________________________________________________________________________________________________________________________
6.3.4   Mapping of the upper half plane___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

We will find all bilinear transformation that map the upper

half plane 0Imz   onto the open disk | | 1w   and the boundary

0Imz   onto the boundary | | 1w 

Let the bilinear transformation be

az b
w Tz

cz d


 


,  0ad bc  ............. (i)

0Imz   is to be mapped on to | | 1w  . Consider points on the

line 0Imz  , say 0,1,z   . For these points we need to have

| | 1w  .

When 0z  , | | | |bw d    from (i)

| | 1 | | | | 0w b d    ......................(ii)

Again we know for z  , aw c  if 0c 

Hence | | 1 | | | | 0w a c    ............. (iii)

Using (ii) and (iii) we can write

.
bza aw
dc z c




 ....................... (iv)

Also  from (ii) and (iii) we have | | | | 0b d
a c   and | | 1a

c 

Let 0
b za   , 1

d zc   , ia ec
 ,

where 0 1,z z  are non-zero complex constants and   is a real

constant.

So,  (iv) can be written in the form

0

1

i z z
w e

z z
 


  ......................... (v)

Again for z=1, |w|=1 gives

0

1

1
1

1

z

z





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i.e. 1 0|1 | |1 |z z  
2 2

1 0|1 | |1 |z z   

     1 1 0 01 1 1 1z z z z
 

     

   
__ __

1 1 0 01 (1 ) 1 (1 )z z z z     

On simplifying and using 
_ _

1 1 0 0z z z z   0 1| | | |z z

we have
_ _

1 1 0 0z z z z  

1 0Re Rez z 

We have 0 1| | | |z z  and 0 1Re Rez z , so either 0 1z z or 
_

1 0z z

But  0 1z z  will reduce (v) to a constant transformation. Hence
_

1 0z z
So, the transformation is of the form

0
_

0

i z z
w e

z z

 




It shows that the point 0z z  is mapped onto the origin of the
w-plane. Again  since points interior to the circle |w|=1 should
be the image of points of the upper  half plane we need to
have 0 0Imz 

Consequently, the bilinear transformation will have the form

0
_

0

i z z
w e

z z

 



  0 0Imz   ........... (vi)

where   is a real constent and 0z  a complex constent

Further we verify that  transformation (vi) satisfy the stated

conditions

Consider

0
_

0

z z
w

z z





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If a point z lie above the real axis both it and the point 0z  lie

on the same side of that axis, which is the perpendicular

bisector of the line segment joining 0z  and 
_

0z  . It follows

that  the distance 0z z  is less than the distance 
_

0z z , that

is |w|< 1. Similarly if z lies below the real axis, the distance

0z z  is greater than the distance 
_

0z z , and so |w|>1.

Finally if z  is on the real axis, then 0z z = 
_

0z z  and hence

|w|=1. Since any bilinear transformation is a  one to one

mapping of the extended z  plane  onto the extended w-plane,

we conclude that the transformation (vi) maps the half-plane

Im 0z   onto the disk |w|<1 and the boundary of the half

plane onto the boundary of the disk.

Remark : Let us see what happens when we replace the

condition 0Im 0z   by 0Im 0z   in (vi)

We have

__

0 01w z z z z    

2__
2

0 0z z z z   

      0 0 0 0z z z z z z z z     

_ _ ____
2 2 2 2

00 0 0 0 0z z z z z z z z zz zz       

_

0 0Re Rez z zz 

02 0yy  Writing x+iy=z

0y  , 02 0yy  and 0 0 0x iy z 
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Thus the lower half plane is mapped onto|w|<1, and the

boundary y = 0 is mapped onto |w|=1.

Example 1 : Consider the  transformation

i z
w

i z





This can be written in the form

i z i
w e

z i
 




Comparing this with (vi), we get   and 0 1 0Imz    Hence

this bilinear transformation maps 0 0Imz   onto | | 1w  .

Example 2 :  Find all bilinear transformation which map the

right half plane   0Re z   onto the  open disk | | 1w   and the

boundary   0Re z   onto the boundary |w|=1.

Solution :We know that if we rotate  the right half plane

  0Re z   and the real axis Im 0z  , by an angle of 2
 , we get

the upper half plane 0Imz   and the imaginary axis   0Re z 

respectively.

This transformation is given by

Gz iz 0Re z 

Again the  bilinear transformation which map 0Imz   onto

1w ||  is given by

0
_

0

i z z
Tz e

z z

 



,  R , 0 0Im z 

Hence the required transformation is  zTG

i.e.       TG z T Gz T iz 
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0
_

0

i iz z
e

iz z

 



,  R , 0 0Im z 

Example 3 : Show that 
z i

w
iz I





 maps 0Im z   onto | | 1w  .

Solution : We have

z i
w

iz I






    
z i

i z i






   
z i

i
z i


 



   
 

 
2

___

i z i
e

z i

  


 

Comparing this with (vi) we see that 2
  and 0z i  , i.e.

0 0Im z 

Hence from the remark we conclude that the transformation

map 0Im z  onto | | 1w 

Check your progress

(g) Find the bilinear transformation that maps

Re(z)<0 onto | | 1w  , and the boundary Re 0z 
onto the boundary | | 1w  .

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.4 Conformal Mapping__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In this section you will be introduced to the concept of conformal
mappings. These are mapping which preserve angle between curves.
First you will be aquanted with the notion of angle of rotation of
curves under a transformation.
Let C be a smooth curve given by       ,z t x t iy t   a t b   .
So  'z t  is continuous and non-zero  ,t a b   . We know that
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increasing values of the parametic t will give positive direction
of the curve C. Let  zf  be a function defined on C. Then

    w t f z t , a t b 

 is the parametric representation of the image curve   of C

under  the transformation  w f z . Let C pass through some

point 0z  . Suppose f is analytic at 0z  and  0 0f z   . Then by

the chain rule

      0 0 0' 'w t f z t z t , 0a t b 

As   0' 0f z t  we have

      0 0 0arg ' arg ' arg 'w t f z t z t 

0 0 0    

where 0  is the angle of inclination of the directed tangent to

C at z0 and is a value of  0arg 'z t . Also 0  is the angle of

inclination of the directed tangent to   (image curve), whereas

0 is the value of  /
0arg f z

Hence the angle of inclination of the directed tangent at w0

differs from the angle of inclination of the directed tangent at

z0 by the angle which we  have  denoted by  0 0arg 'f z 

This angle  0arg 'f z  is called the angle of rotation at z0 .

 

C 

Z0 

Y 

X 

o 

   

X 

Wo 

O 

Y 

o 

 
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Example 1 : Find the angle of rotation of a curve C under the

transformation   2 2f z z i   at the point 1-i.

Solution : The angle of rotation at 0 1z i   is given by

 0arg 'f z

We have

     / 4
0 1

2 2 1 2
i

i
f z z i e




   

Angle of rotation  f 40arg ' z   

Check your progress

(h) Find the angle of rotation of a curve C under the

transformation  f z Sinz  at

 (a)  i, (b)  -i,    (c)  1,    (d)  -1

Defintion : A mapping  zf  is said to be conformal; at a point

0z   if it preserve the angle between oriented curves passing
through 0z  in magnitude as well as in sense.
Geometrically this means that the images of any two oriented
curves taken with their corresponding orientations make the
same angle  of intersection as the curves at 0z , both in
magnitude and direction.
If  zf  is conformal at all points of its domain then it is called
a conformal mapping.
The following theorem gives the sufficient condition for a
function to be conformal.

Theorem 1 : A mapping  zf  is conformal at a point 0z  if it is
analytic at 0z  and  0 0f z  .

Proof : Let 1C  and 2C  be two oriented curves through 0z

such that 1  and 2  are respectively the angles made by
the directive tangents to the two curves at 0z . Let 1 and

2  be the angles made by the directed tangents to the
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image curves at 0w . Then from the previous discussion we
know that the angle of rotation of the curves 1C  and 2C  at

0z  is given by

 0 1 1arg 'f z     and  2 2 0arg 'f z  

Hence

1 1 2 2     

2 1 2 1      

Thus the angle 2 1   from 1  to 2  is the same in magnitude

and sense as the angle 12   from 1C  and 2C  . Consequently

f is conformal at 0z .

Remark : To verify that a function  zf  is conformal at some

point 0z  examine whether f is analytic at 0z   and  0' 0f z  .

Check your progress :

(i) Show that   2f z z iz   is conformal at z=i  but

not conformal at 2
iz   .

Example : Consider the transformation  
__

w f z z  . Under

this transformation any curve or region get reflected along

the real axis. So under their transformation angle between two

curves is preserved in megnitude but not in sense.

These type of transformations which preserve magnitude but

not sense are called isogonal mapping.

Exercise : The bilinear transformation

az b
w Tz

cz d


 


,   0ad bc 

is conformal at all points except one.
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Proof :

We have

az b
Tz

cz d






     
 2

'
cz d a az b c

T z
cz d

  
 



 2 0
ad bc

cz d


 


, as 0ad bc 

So Tz is analytic  and  ' 0T z   at all points except dz c 

Consequently Tz is conformal everywhere except at dz c  .

Definition : If  zf  be analytic at 0z  and  /
0 0f z  , then 0z  is

called the critical point of the transformation.

Example :  Consider the transformation

  2 2zw f z e iz z   

 zf  is  non constant  and analytic everywhere, the critical points

are given  by

 / 0f z  , i.e. 22 2 0ze i 

2ze i 

 2 2 2z i n    , n I

i.e.  4z i n   , n I .

Definition :  Let  f z  be analytic at 0z  then the number  0| ' |f z

is called the scalar factor of the mapping at 0z .
We have

         
0 0

00
0

0 0

'
z z z z

f z f zf z f z
f z Lt Lt

z z z z 


 

 
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0z z  is the length of the line segment joining 0z  and z and

   0f z f z  is the length of the line segment joining  0zf

and  zf  in the w-plane

Remark : If  w f z  is conformal at 0z , then for points near

0z  ,the angle of rotation and scalar factor are approximately

equal to  0zf'arg  and  0zf'  respectively. This mean that the

image of a small region in a neighbourhood of 0z  conforms to

the original region in the sanse that it has approximately the

same shape.

Check your progress :

(j) Find the scalar factor of the transformation
2w z  at 2z i 

Theorem : Let  zf  be analytic at 0z .  If f has  a zero of order

(k-1) at 0z  , then the mapping  w f z  magnifies the angle  at

0z   by the factor k.

In other word , if   is the angle beftween two curves 1C  and

2C  in the z -plane, then the angle between the image curves

1 and 2  in the w- plane is k .

Proof : Since  f z  is analytic  at 0z , by  Taylor servies

     0
0

0 !

n
nf z

f z z z
n



 

in some neighbourhood of  0z .

As  'f z has a zero of order (k - 1) at 0z

   1
0 0' ............... 0kf z f z    and    0 0kf z 

 f z  has the representation
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   
     

   
   

1
10 0

0 0 0 ...
! 1 !

k k
k kf z f z

f z f z z z z z
k k


     



         
       

   
1

0 0
0 0 0 ...

! 1 !

k k
k f z f z

f z f z z z z z
k k

 
       

  

   0

k
z z g z  ..................... (i)

where  zg  is analytic at 0z  and

 
   0

0 0
!

kf z
g z

k
 

Then writing   w f z  and  0 0w f z  we have

          0 0 0arg arg arg argw w f z f z k z z g z         ...... (ii)

Let 0C  be a smooth curve passing through 0z  and   be the

image  under  w f z .

Let 0zz   along 0C  then 0ww   along  . Also then the angle

of inclination of tangents to 0C  and 0T  are given  by

 
0

0 0arg
z z
Lt z z


   and  
0

0 0arg
w w
Lt w w


 

Then from (ii) we have

 0argk g z    .................................... (iii)

Next 1C  and 2C  be  two curves passing through 0z  and 1

and 2  be their images under  w f z . Then from (iii)

 1 1 0argk g z  

and  2 2 0argk g z  

Where 1 , 1  are associated to 1C  and 1T ,

and 2 , 2  are associated to 2C  and 2T .
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Hence we have  2 1 2 1k     

That is the angle from 1  to 2  is k- times the angle from 1C  and

2C  in magnitude. Further note that the direction is preserved
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.5 1. Let us sum up :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In this unit we have discussed different types of
transformations.

Starting from elementry transformation like translation,

rotation, stretching (contraction), linear, we  have  considered

complex transformation like bilinear transformation. We  have

seen  that bilinear transformation maps circle and line into

circle  s and lines. different properties of bilinear

transformation were discussed. Some of them are : the inverse

of a bilinear transformation has at most two fixed points, a

bilinear transformations continuous in the extended complx

plane, a bilinear transformation is analytic everywhere except

possibly at a single point. One important result is that any

three distinct in the z-plane can be mapped onto three specified

points  of the w-plane by a  unique bilinear transformation.

The bilinear transformation which maps the upper half plane

Im  z>0 onto the open disk |w|<0 and the boundary Imz=0

onto the boundary |w|=1 is of the form.

 
__

0 0
iW e z z z z z      

 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2. Keywords  :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Translation, Rotation, Contraction, Bilinear transformation,
Fixed Points,  Upper half plane, Lower half plane, Conformal
mapping.
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_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
3. References  :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

1. R.V. Chufrchill & J.W. Brown, Complex Variables and
Applications, Mc. Grow Hill

2. Murray R. Spiegel, Theory & Problems of Complex
Variable (Schaum's Outline Series) SI. (Metric) Edition,
1981,  Mc. Grow Hill

3. H.S. Kasana, Complex Variable, Theory and
Application Prentice Hall of India.

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4. Possible Answers to the CYP  :__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

(a) The region is the  interior and boundary of the circle
|z|=1. The transformation is a translation. The region
will be displaced through a distance of 5  along the
vector (2,1)

(b) The Transformation is rotation through an angle of 4
 .

(c) The Region 1 2z   is the annular region between the

concentric circle |z|=1 and |z|=2 and the
transformation w=(1+i)z is a strecthing (since here a=1+i

and |a|>1)

(d) The given region is the circle |z|=2 and the transformation

w=iz+1 is the combination of relation by 90o/ve

multiplication by 9i) followed by a translation.

(e) Proceed as in the example 2 of that section.

(f) Proceed as in example 1 of that section

(g) The required transformation can be obtained by simply

applying the transformation Hz=-z to the transformation

obtained in example 2 of that section.

(h) Proceed as in the given example 1 of that section.
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(i)    2 /, 2f g z iz f z z i   

      / -0 2
if z for z 

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.  Model Questions :
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

1. Find the image of the infinite strip 0<x<1, under the

transformation  w = iz.

2. Show that the transformation w = iz + 1 maps the half

plane x>0 onto the half plane v>0.

3. Find the region onto which the half plane y>0 is mapped

by the transformation w = (1+i) z

4. Find the image of the quadrant x>1, y>0 under the

transformation 1w z .

5. Describe geometrically the transformation 
1

1
w

z




6. Find the bilinear transformation that  maps the points

1 2z  , 2z i , 3 2z    onto the points 1 1w  , 2w i ,

3 1w   .

7. Find the bilinear transformation that maps the points

1 2 3, 0,z i z z i     onto the points 1 2 31, , 1w w i w    .

Into what  curve is the imaginary axis x=0 transfromed?

8. Find  the bilinear tansformation that maps distinct

points 1 2 3, ,z z z  onto the points 1 2 30, 1,w w w  

9. Find the fixed point of the transformation

(a)
1

1

z
w

z





, (b)

6 9z

z


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10. Prove that if the origin is a fixed point of a  bilinear

transformation. then the transformation  is of the form

,
z

w
cz d


 0d 

11. Determine the angle of rotation at the point z = 2 + i when

the transformation is 2w z . Find the scalar factor of the

transformation at that point.

12. What angle of rotation is produced by the transformation

1w z  at the point

(a) z=1, (b) z=i, (c)  z = -1

13. Show that the transformation w = sin z is conformal at

all points except

2z n    0, 1, 2,..............n   

14. Construct a linear transformation which carries i onto -

i and maps 1+2i onto itself.

15. Find the image of the strip x>0, and 0<y<1 under the,

map iw z

16. Determine all bilinear transformation which have fixed

points as -i and i.

17. Find the bilinear transformation with fixed points-1 and 1

carrying the points i onto -i

18. Let 
az b

Tz
cz d





 , where 0ad bc   be any bilinear

transformation other than Tz=z.

Show that  1T T   iff d = -a.
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19. By finding the inverse of the transformation

i z
w

i z






Show that
1

1

z
w i

z






maps the disk | | 1z  .  onto the half plane  0Imw 

20. Let 
1

z i
w

iz





. then show that

Im 0 | | 1z w  

21. Construct the general bilinear transformation which

maps the upper half plane

(a)   Onto itself, (b)   Onto the lower half plane

22. Find the  bilinear transformation which  maps the upper

half plane of the z-plane onto the unit circle in the w-plane

in such a way that z = i is mapped onto w = 0 while the

point at infinity is mapped onto w= -1.
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